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Position
•NTNU Top Research Program for highly qualified scientists
•International Chair
•Stephen Timoshenko fellow 2018 at Stanford University
•Award of Merit 2018 from ESIS

Current research topics
•Fatigue and fracture of traditional and advanced materials
•Structural integrity of additively manufactured materials
•Local approaches for fatigue design
•Multiaxial fatigue
•Notch Effect
•Energy based methods, Data-driven approaches





Fatigue and Fracture Lab

https://www.ntnu.edu/mtp/laboratories/mechtestlab

Laboratory equipment
Universal testing machines:
•Zwick 250kN
•Multiaxial MTS 100kN and 2000 Nm
•MTS 50 kN
•Instron 100kN (Servohydr. with hydr. 
grips)
•Instron 50kN (Servohydr. with hydr. grips)
•Instron 40kN (Servohydr. with hydr. grips)
•MTS 5 kN



Crack propagation in cyclically 
loaded metallic components

Part 1: Introduction to fatigue
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Learning Philosophy- Competence Orientation1

Have a good understanding of failure mechanisms

“Failure is central to engineering. Every single calculation that an engineer makes is a 
failure calculation. Successful engineering is all about understanding how things break 
or fail.“

Henry Petroski
American engineer in failure analysis
Professor of civil engineering and history Duke University
Industrial design history of common everyday objects
Frequent lecturer and a columnist for the magazines American 
Scientist and Prism.

1) F. E. Weinert, in Defining and selecting key competencies, Hogrefe & Huber Publishers, Ashland, OH, US, 2001, pp. 45–65.
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Versailles rail accident 1842

Fatigue- “Suddenly it happened”

August Wohler, Railway engineer, 1819-1914



Fatigue- “Suddenly it happened”

August Wohler
Railway engineer
1819-1914

First systematic investigation of S-N curves.
• Fatigue occurs suddenly, also in ductile materials
• Minimization of fatigue by lowering the stress at critical points of the

component
• Fatigue occurs by crack growth from surface defects until product can not 

longer support the load



Woehler Curves

https://www.fatec-engineering.com/2018/02/20/description-of-a-s-n-curve/

• Relation between cyclic 
stress amplitude and number 
of cycles to failure.

• S-N curves are derived from 
fatigue tests (constant 
amplitude)

• Kt=1 unnotched

௔
௕
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Cyclic Loading

Dowling- Mechanical Behavior of Materials, Fourth Edition, Pearson 2013

∆σ=σmax-σmin
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Cyclic Loading
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Dowling- Mechanical Behavior of Materials, Fourth Edition, Pearson 2013



Woehler Curves- Mean Stress

Goodman

Gerber for sigma_m>=0

Smith, Watson 
and Topper

Goodman correction with
true fracture strength

Walker

Dowling- Mechanical Behavior of Materials, Fourth Edition, Pearson 2013



Woehler Curves- Mean Stress

Constant life diagram for 7075-T6 aluminum Stress-life curves for axial loading of unnotched
A517 steel for constant values of the stress ratio R

Dowling- Mechanical Behavior of Materials, Fourth Edition, Pearson 2013
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Learning Outcome
By the end of this course, you will know

• Material failure under cyclic loading

• The role of plasticity and applicability of LEFM under cyclic
loading

• Crack initiation, propagation and final growth until rupture

• Life estimation on a pre-cracked component

• The crack growth rate da/dN and the role of the stress 
intensity factor K in the crack growth



15 N. E. Dowling, Mechanical Behavior of Materials, Pearson, Boston, 4th edition., 2012.

Pensum book
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What is a crack?

Photo courtesy of J. H. Underwood, U.S. Army Armament RD&E Center, Watervliet, NY.

AISI 4335 steel artillery tube.

Nonmetallic inclusion



Modes of Crack Surface Displacement

N. E. Dowling, Mechanical Behavior of Materials, Pearson, Boston, 4th edition., 2012.

Tension In plane Shear Out of plane Shear



Local stresses at the crack tip

K…magnitude (intensity) of the stresses in the
vicinity of an ideally sharp crack tip

N. E. Dowling, Mechanical Behavior of Materials, Pearson, Boston, 4th edition., 2012.
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(plane strain; εz=0)

(plane stress)

Geometry factor

Nominal remote applied stress

Crack length



Plasticity limitation

Plane stress

Plane strain

N. E. Dowling, Mechanical Behavior of Materials, Pearson, Boston, 4th edition., 2012.

Yield strength

G.R. Irwin



Plane stress

Plane strain

Plasticity limitation

Dowling- Mechanical Behavior of Materials, Fourth Edition, Pearson 2013
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Plasticity limitation- cyclic plastic zone
Smax

Smin
Smax

 Inelastic stress distribution in plastic zone of opposite sign of the applied stress
 The plastic zone is smaller (for R=0, ¼ of the monotonic zone)
 Fatigue cracks sharp, far filed stresses small => LEFM is applied in fatigue crack growth.

Reference?
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Plasticity limitation

LEFM applicable

Dowling- Mechanical Behavior of Materials, Fourth Edition, Pearson 2013
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Applicability of LEFM under cyclic loading

଴ఙ
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ଶ
Plastic zone size- Plane stress

Monotonic Loading Cyclic Loading

Stress Intensity Factor

௖
ூ

௒ௌ
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ଶ

Fatigue cracks sharp, far filed stresses are small => LEFM is commonly applied in fatigue crack growth.

Plastic zone size- Plane strain
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N. E. Dowling, Mechanical Behavior of Materials, Pearson, Boston, 4th edition., 2012.
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Crack Growth under cyclic loading
At higher S, da/dN is higher
Fatigue life shorter

a shorter at 
higher S

Given and initial a, life to fracture depends on S and the final fracture resistance 
of the material (which dictates final crack length)

N. E. Dowling, Mechanical Behavior of Materials, Pearson, Boston, 4th edition., 2012.

௠௔௫ ௠௔௫

௠௜௡ ௠௜௡
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௠௔௫
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Stress is constant 
Fracture at 
• crack length, a=aC,
• Giving KI=KIC

For a<aC(KI<KIC) the crack will not 
propagate

Stress is dynamic 
Fracture at 
• KI=KIC for a certain instant of time
• for KI<KIC, the crack may still propagate

a grows until fracture at a=ac

Growth of fatigue cracks depends on the cyclic value of the 
Stress Intensity Factor!

Monotonic Loading Cyclic Loading

Crack Growth under cyclic loading
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Fatigue crack
growth threshold

da/dN slow at low ∆K

da/dN unstable at high ∆K

Brittle fracture/ gross yielding

mKC
dN
da

)(
Power relationship between 

extremes for R~0, m ≈ 2-4 for 

metals

Kmax=Kc governed by fracture 

toughness of material and 

thickness

P. Paris and F. Erdogan, Journal of Basic Engineering, 1963, 85, 528–533.

Crack Growth under cyclic loading
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Stage II: Propoagation Stage III: Final Growth until
rupture

high ΔK with the development 
of 45deg inclined shear planes

microstructure sensitive , 
difficult to quantify and model

a large part of fatigue life 
approximated by Paris law

Stage I: Initiation

Stages of Crack Evolution

N. E. Dowling, Mechanical Behavior of Materials, Pearson, Boston, 4th edition., 2012.
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• Small cracks
– Shear driven

– Interact with microstructure

– Mostly analysed by continuum 
mechanics + dislocation-based  
approaches

• Large cracks
– Tension driven

– Fairly insensitive to the 
microstructure

– Mostly analyzed by fracture 
mechanics models

( )mda
C K

dN
 

Crack Growth under cyclic loading

N. E. Dowling, Mechanical Behavior of Materials, Pearson, Boston, 4th edition., 2012.



29 Dowling- Mechanical Behavior of Materials, Fourth Edition, Pearson 2013

Crack Growth under cyclic loading
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• da/dN increases with a Function including effects of environment, frequency,…

Number of cycles from initial ai at Ni to final af at Nf

• For m=3, ai dominates, life insensitive to af

• Most of the cycles are accumulated at ai –> choose F close to Fi

• For m=2 the equation is indeterminate
• Only under constant amplitude!

Residual life under cyclic loading

න 𝑑𝑁 = 𝑁௙ − 𝑁௜ = 𝑁௜௙ = න
𝑑𝑎

𝑓(Δ𝐾, 𝑅)
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ே೑

ே೔
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𝑑𝑁
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𝑁௜௙ = න
1
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N. E. Dowling, Mechanical Behavior of Materials, Pearson, Boston, 4th edition., 2012.
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Effects of Load Ratio R- Walker equation

Dowling- Mechanical Behavior of Materials, Fourth Edition, Pearson 2013

How to compensate
for load ratio?
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Effects of Load Ratio R- Walker equation

Dowling- Mechanical Behavior of Materials, Fourth Edition, Pearson 2013

Material constant
Equivalent zero-to-tension
(R=0) stress intensity

Paris Law for 
Walker ∆K

Constant for R=0

 γ has to be found from a linear regression of specimen tested at different R
 γ=0 when R=0 such that ∆K=Kmax
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Effects of Load Ratio R- Walker equation

N. E. Dowling, Mechanical Behavior of Materials, Pearson, Boston, 4th edition., 2012.
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Summary
• Materials fracture brittle under cyclic loading. The load can be under the yield

strength of the material
• A crack is a defect from which fatigue failure can be initiated
• As long as the plastic zone remains small, LEFM can be applied, which is 

generally the case under cyclic loading
• The crack growth behavior can be described by the crack growth rate da/dN

and the stress intensity factor ∆K
• Fatigue crack growth can be divided into three regimes, initiation, stable 

growth and final growth until failure, they are characterized by typical fracture
surfaces

• Between ∆Kth and KC, a linear power law describes the crack growth behavior
• The effect of the load ratio R can be compensated via the Walker equation



Local Approaches for fatigue design

Part 2: Fatigue is local
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• Introduction
• Notch and geometrical discontinuities
• Local approaches
• Defects and fatigue design
• Multiaxial loadings
• Additive materials: some examples

Outlines



• Design in presence of geometrical 
discontinuity

• Safety in presence of defects due to the 
process

• Assessment in presence of complex 
loadings

Challenges in Design of AM components



Fatigue design 

no flaws (cracks) allowed 

R. I. Stephens, A. Fatemi, R. R. Stephens, H. O. Fuchs, Metal Fatigue in Engineering, Wiley



Stress (strain)-based fatigue design

Component
Geometry

Loading
History

Stress-Strain
Analysis

Damage 
Analysis

Allowable Load - Fatigue Life

Material
Properties Fracture Mechanics 

Pre-requisites



FATIGUE IS LOCAL



Multi-Scale Nature of 
Fracture

Macroscopic failure
(global catastrophe 
>1m)

Individual Cracks

(macro-level, 1mm)

Grain Structure
(meso-level, 0.1mm)

Individual atoms
(atomic level, 0.1nm) Individual defects (micro-level, <0.1mm)



Stages of Fatigue
• Crack initiation I

• Crack growth II

• Final rupture III

Final failureCyclic slip Crack nucleation Micro crack 
growth

Macro crack growth

Initiation period Crack growth period

SEM image 

start

progres
s

End



Fatigue life diagram in
Ultra High Cycle Fatigue (UHCF) Regime 

Internal inclusions

Predominant crack growth



Morphology of Fatigue 
Initiation

Initiation in high-strength steel 4240Fatigue crack initiation at inclusion
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180 RB, FGA 180 RB, Fisheye
150 UL, FGA 150 UL, Fisheye

 Estimated value: K
FGA

=5.5MPa*m1/2

Maximum Stress, MPa

• FGA sizes within a relatively small range: 40 ‒ 100 mm 

• Fish-eye sizes distributed in a large range: 100 ‒ 300 mm

(1% C, 1% Cr)

• Hong Y, Lei Z, Sun C, Zhao A. Int J Fatigue, 2014, 58:144‒151

Characteristic Size of Crack Initiation

FiE

Inc FGA



Effect of various surface 
finishes on the fatigue limit of 
steel. Shown are values of the 
ks, the ratio of the fatigue limit 
to that for polished specimens.

Below a generalized empirical 
graph is shown which can be used 
to estimate the effect of surface 
finish in comparison with mirror-
polished specimens [Shigley].

Surface Finish Effects on Fatigue Limit
The scratches, pits and machining marks on the surface of a material add stress concentrations to the ones
already present due to component geometry. The correction factor for surface finish is sometimes presented on
graphs that use a qualitative description of surface finish such as “polished” or “machined”

(from R. Stephens, A. Fatemi, Metal Fatigue 
in Engineering, Wiley &Sons 2012)

Ca

k s

R. Budinas, J.K. 
Nisbett, Shigley's
Mechanical Engineering 
Design, Mcgraw-Hill
series, 2015



Surface Finish Effects on Fatigue Limit



Surface Finish Effects on Fatigue Limit

Bayoumi, 1999

Fatemi, 2012

grinded polished



For AM materials

Building direction

Surface finishing

Residual stresses

Post-treatments

Coatings



• Introduction
• Notch and geometrical discontinuities
• Local approaches
• Defects and fatigue design
• Multiaxial loadings
• Additive materials: some examples

Outlines



Gustav Ernest Kirsch Stephen Timoshenko James Goodier



Small circular hole in a plate under uniaxial tension

Problem geometry for a small circular hole in a plate

Boundary 
conditions:



Small circular hole in a plate under uniaxial tension

The resulting stress distribution, which satisfies B.Cs is given by:



Small circular hole in a plate under uniaxial tension

Visualize the in-plane principal stresses (using MATLAB)

In-plane principal stresses for problem geometry shown before



Small circular hole in a plate under uniaxial tension

The maximum and minimum stresses occur along the hole boundary

What about a plate with a 
small circular hole under:

1. Bi-axial loading?

2. Pure shear loading?
Location of max. and min. stresses



Charles Inglis



Problem of an elliptical hole

Problem geometry for an elliptical hole in a large plate

First solved by Inglis (1913).

Solution presented in an 
elliptical coordinate system.





Problem of an elliptical hole

The above formula can also be expressed as: 
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Stresses due to Mode I loading

  







































m
m
m


















mm
mm
mm




















































































m







)1(sin

)1cos(

)1cos(

)1(sin)1(

)1cos()3(

)1cos()1(

r

r

1q4

q

)1(sin

)1cos(

)1cos(

)1(

)1(sin)1(

)1cos()3(

)1cos()1(

ar

1

1

1

c

11

11

11

d
0

1

1

1

1b

11

11

11

1
1

1

r

r

11

11

1

1

Stresses due to Mode II loading
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Characteristic parameters for mode I loading.

2  m b c d 

0 0.5 -0.5 1 4 0 

/4 0.5050 -0.4319 1.1656 3.5721 0.0828 

/3 0.5122 -0.4057 1.3123 3.2832 0.0960 

/2 0.5448 -0.3449 1.8414 2.5057 0.1046 

/3 0.6157 -0.2678 3.0027 1.5150 0.0871 

3/4 0.6736 -0.2198 4.1530 0.9933 0.0673 

5/6 0.7520 -0.1624 6.3617 0.5137 0.0413 

 

2  m b c d 

0 0.5 -0.5 1 -12 0 

/4 0.6597 -0.4118 0.8140 -10.1876 -0.4510 

/3 0.7309 -0.3731 0.6584 -8.3946 -0.4788 

/2 0.9085 -0.2882 0.2189 -2.9382 -0.2436 

/3 1.1489 -0.1980 -0.3139 4.5604 0.5133 

3/4 1.3021 -0.1514 -0.5695 8.7371 1.1362 

5/6 1.4858 -0.1034 -0.7869 12.9161 1.9376 

 
Characteristic parameters for mode II loading.
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where the constant a1 has to be determined at a convenient distance 
from the notch tip, where the stress fields of the rounded and sharp 
notch practically coincide 

The stress field in the neighbourhood of the notch tip can be
expressed as a function of a stress field parameter, mode I N-
SIF. Its definition is consistent with the usual Stress Intensity
Factor definition if the notch radius and opening angle are both
null. Gross and Mendelsson (1972) definition:

11
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0r
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Notch stress intensity factor



L

t

h

h
2    =135°

bisector

2




 



r

r

r
q

Y

X

Special sharp notch case



2




 



r

r

r
q

Y

X

For Mode I fracture

   
   
   
   

 
 
 
 





   

  
  
  

 
 
 
 



 



r

r

r K

sin sin


















  

 
 
 
















  









































0

1
1

1 1 1

1 1

1 1

1 1

1 1

1

1

1

1

2 1 1

1 1

3 1

1 1

1

1

1

1

1
cos

cos

cos

cos

For Mode II fracture,

   
   
   
   

 
 
 
 





   

  
  
  

 
 
 
 



 



r

r

r K
sin

sin

sin

sin


















  

  
  

 
















 

 







































0

1
2

2 2 2

2 2

2 2

2 2

2 2

2

2

2

1

2 1 1

1 1

3 1

1 1

1

1

1

1

2

cos cos

In the direction normal 
to the main plate ( = 22.5°)

N
2

302.0N
1

326.0 Kr322.0Kr361.0  


Along the free edge (=112.5°)

302.0
2

326.0
1r r553.0Kr423.0K  

Stress field at the weld toe 



0.1

1

0.001 0.01 0.1 1 10 100
Distance from the tip / 



max

FEM

Eq. (41)

net

 

40 

10 90° 

1.25 

q=1.5 

Validity of the equations
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Neuber’s modified solution

Neuber’s exponents q, t and Williams’ mode I eigenvalue  for tension-loaded V-
notches; Neuber’s exponent (1-2q)/q compared with Lazzarin’s exponent m.

F. Berto, P. Lazzarin, D. Radaj
Eng Fract Mech 2009





• Introduction
• Notch and geometrical discontinuities
• Local approaches
• Defects and fatigue design
• Multiaxial loadings
• Additive materials: some examples

Outlines



Neuber’s procedure of fictitious notch
rounding

f =  + s*

The averaged notch stresses  at the real notch with radius 
can directly be determined without an averaging procedure by
analysing a substitute notch with fictitiously enlarged notch
radius f :



Neuber’s concept of microsupport



Neuber’s procedure of fictitious notch rounding

f =  + s*

*
y

a

2

x

  
ρ*

0
th xdσ

*ρ

1
*ρβ,σ

= 0

2

x0

a f=s*

y

x

max 

Worst case



Fictitious notch rounding concept for welded joints

Fictitious notch rounding simulating stress averaging over * in the
direction of crack propagation has successfully been applied to the
fatigue assessment of welded joints (Radaj 1969, 1975, 1990).

Within a worst case consideration, the parameter values:

•  = 0 (worst case), * ≈ 0.4 mm (welded steel), s ≈ 2.5

This very rough estimate is applied to the cross-sectional model of 
welded joints in the form of a blunt circular notch at the weld toe and 
a keyhole at the weld root.

The SCFs at these notches are considered as theoretical fatigue notch 
factors characterising the endurance limit of the joints.

result in the fictitious notch radius:
• f =  + s* = 1 mm



IIW recommendations for fatigue design of welded

joints and components

f=1 mm indipendent of the notch opening angle

“s” is referred to the case of normal stress (under plane
stress)

f =  + s * =1.0 mm s=2.5, ,* = 0.4 mm
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Notch rounding approach



STEPS FOR THE APPLICATION OF THE FNR APPROACH





*x

x

0

0

x
ρ*

1
*)ρ,(ρ d  th

Choice of the fracture criterion (normal stress, von Mises, Beltrami) and
Write the equivalent stress accordingly to the selected criterion  (or ) 
along the bisector line by means of the expressions valid for V-notches

STEP 1

STEP 2
Determine the effective stress as a function of  and *

STEP 3

Solve the limit   0*f lim)max(ρ



STEP 5

Determine f (,*):

Evaluation of  s:
STEP 6

s=(f )/*

ρ)*,(ρfρf 

STEP 4Solve the equation:

ρ)*,(ρ)max(ρf 
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Neuber Filippi, Lazzarin and Tovo 

2 
Normal 
stress 

Normal 
stress 

von Mises 
plane stress 

von Mises 
plane strain 

Beltrami 
plane stress 

Beltrami 
plane strain 

0° 2.00 2.00 2.50 2.90 2.30 2.42 
60° 2.36 2.41 2.90 3.33 2.72 2.85 
90° 2.72 2.81 3.37 3.80 3.14 3.28 

120° 3.47 3.67 4.32 4.84 4.06 4.24 
135° 4.21 4.56 5.33 5.94 5.02 5.22 
150° 5.73 6.38 7.41 8.20 6.99 7.25 

 

 

200 

2 

10 



200 

ng 

Values of  “s” for different notch angles



Reference notch concept Pedersen’s
diagram
(Pedersen 2011)



Microhole at weld root of thin-sheet lap joint

Thin-sheet lap joints (t = 0.7-5 mm), resistance spot-welded or laser
beam seam-welded, require a special procedure because of increasing
problems with cross-sectional weakening and slit-parallel loading.

These peculiarities are overcome by application of a microhole at the
weld root ( = 0.05 mm) followed by notch stress averaging over *.



Theory of Critical Distance

D. Taylor, The Theory of Critical Distances 2007
L. Susmel, Multiaxial Notch Fatigue 2009



Peterson RE. Notch sensitivity. In: Sines G, Waisman JL, editors. Metal fatigue.
New York, USA: McGraw Hill; 1959. p. 293–306.

Tanaka K. Engineering formulae for fatigue strength reduction due to cracklike
notches. Int J Fract 1983;22:R39–46.

Taylor D. Geometrical effects in fatigue: a unifying theoretical model. Int J Fatigue
1999;21:413–20.

Seweryn A. Brittle fracture criterion for structures with sharp notches. Eng Fract
Mech 1994;47:673–81.

A. Seweryn K. Tanaka





Volume method S. Sheppard

Sheppard, S. D. (1991) Field effects in fatigue
crack initiation:long life fatigue strength.Trans.
ASME. J. Mech. Des.113,188–194

A semi-circular sector of radius M (then
restricted to the inscribed triangle) was used,
for example, by Sheppard who quantified the
stress state near a notch by means of a single
parameter, the average value of the principal
stress







Point Method

Line Method

Area Method



Brittle Failure by TCD

L. Susmel, D. Taylor, Engineering Fracture Mechanics 75 (2008) 534–550







Notch Stress Intensity Factor
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According to Gross and Mendelson’s definition (1972),
the N-SIFs related to the mode I stress distribution are:
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Original data from Gurney (1991) 
and Maddox (1987)

Main Plate thickness ranging from 6 to 100 mm;

Transverse plate thickness ranging from 3.0 to 200 mm.
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STRAIN ENERGY DENSITY
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Eugenio Beltrami 
(16 November 1835 – 18 February 1900) was an
Italian mathematician notable for his work
concerning differential geometry and
mathematical physics. His work was noted
especially for clarity of exposition. He was the first
to prove consistency of non-Euclidean geometry
by modeling it on a surface of constant curvature,
the pseudosphere, and in the interior of an n-
dimensional unit sphere, the so-called Beltrami–
Klein model. He also developed singular value
decomposition for matrices, which has been
subsequently rediscovered several times.
Beltrami's use of differential calculus for problems
of mathematical physics indirectly influenced
development of tensor calculus by Gregorio Ricci-
Curbastro and Tullio Levi-Civita.



Advantages of a local-energy approach
based on NSIFS

• Permits consideration of the scale effect.

• Permits consideration of the contribution of different Modes.

• Permits consideration of the cycle nominal load ratio.

• Overcomes the complex problem tied to the different NSIF
units of measure in the case of crack initiation at the toe
(2a=135°) or root (2a=0°).

• Overcomes the problem of multiple crack initiation and their
interaction.

• SED can be evaluated with coarse meshes

• It directly takes into account the T-stress

• It directly includes three-dimensional effects



Sharp notches and the SED approach
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Sharp notches and the SED approach
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R0: control volume radius

e1,2: shape functions, which depend on the  notch angle and Poisson’s ratio
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Blunt notches and the Sed approach under mode  I  loading

The criterion based on the local energy and valid for brittle or quasi-brittle 
material considers that the strain energy averaged over a control volume is 
critical for notched components
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Control volume definition under static loadig

E2/W 2
tC 

CWW 

The critical energy

    )1(22N
22

)1(22N
11

21 RKe
E

1
RKe

E

1

)R(A

)R(E
W  

Unnotched material

cracked material
2

5.0
01

1
)(

1)(
1 4 










R

K

E

I

A

E
W IC

e
e



2

0
4

)85)(1(










t

ICK
R






 

0 

0.4 

0.8 

1.2 

1.6 

0.1 1 10 100 1000 

ceramic materials 

PMMA data  

metallic materials and other materials 

R/R0 

About 900 data 
 

from static tests 

 

0.4 mm  R0  500mm 
 

2.5  t  1200 MPa 
 

0.15  IC  55 MPa m0.5 
 

0.1   0.4  
 

0  R/R0  1000 
 

0  2  150° 
 

Mode 1 and mixed mode 
  

R  0  

R0 r0 

R 
R0+r0 

R0 

r0 

 

CW

W

Steel AISI O1 
Duralluminium  PVC  

Synthesis of data taken from the literature. Different materials are 
summarised, among the others AISI O1 and duralluminium

Notched samples under static loading
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Coarse mesh: example

Series 1 
5 elements in the volume  
35 elements in the entire model 

The SED can be accurately evaluated by using coarse meshes. 

The NSIFs evaluation requires fine mesh with concentration keypoint.



Fine meshes usually used for Nsifs evaluation
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    Fine mesh Parabolic FE (Coarse mesh) 

Series 
t 

 [mm]  
h 

 [mm]  
L  

 [mm] 
K1 

 [MPa mm0.326] 
W  

[N mm/mm3] 
K1 

[MPa mm0.326] 
% 

1 13 8 10 265.0 4.28102 274.3 3.5 
2 50 16 50 396. 9.07102 399.3 0.7 

3 100 16 50 413.0 9.94102 417.9 1.2 

4 13 5 3 228.8 3.25102 238.9 4.4 

5 13 10 8 267.5 4.23102 272.8 2.0 

6 25 5 3 231.0 3.32102 241.6 4.6 

7 25 9 32 329.5 6.11102 327.7 -0.5 

8 25 15 220 405.0 9.08102 399.4 -1.4 

9 38 8 13 296.7 5.21102 302.5 2.0 

10 38 15 220 476.0 1.25101 469.0 -1.5 

11 100 5 3 228.1 3.28102 240.2 5.3 
12 100 15 220 589.5 1.87101 573.0 -2.8 

 

Comparison of K1 obtained 
with fine and coarse meshes
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Three dimensional models

Geometry of the welded joints with a longitudinal 
stiffener tested by Maddox

Maddox SJ. Influence of tensile residual stresses on the fatigue behavior of welded joints in steel. ASTM STP. 1982; 776: 63-96.



Different meshes for three dimensional models



3D  
models 

 

Number of 
FE 

in the volume  

Degrees of 
freedom 

(complete model) 

W  
Nmm/mm3 

K1 
[MPa mm0.326] % 

1 1696 8.6·105 0.07937 373.5 0 

2 768 4.6·105 0.07903 372.7 0.21 

3 324 2.5·105 0.07896 372.5 0.26 

4 96 1.7·105 0.07895 372.5 0.26 

5 24 4.5·104 0.07790 370.0 0.93 

6 4 1.1·104 0.07594 365.3 2.18 

 

Different meshes for three dimensional models



recent paper (2014)
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