

H2020-WIDESPREAD-2018, Project No. 857124

www.siramm.unipr.it

European Commission

1st Winter School, 24-28 Jan. 2021

Trends on Additive Manufacturing for Engineering Applications

Practical session 2 (Faculty of Mech. Eng. Lab., Timisoara & Online)

Testing of AM specimens (static, dynamic, fracture toughness)

Prof. Liviu MARSAVINA, Assoc. Prof. Dan STOIA, Assoc. Prof. Emanoil LINUL, Lect. Sergiu GALATANU

University Politehnica Timisoara, ROMANIA

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Department of Mechanics and Strength of Materials - History

- □ The Strength of Materials Laboratory was opened in 1923 in the presence of King FERDINAND and Prime Minister I. C. BRATIANU.
- □ First tests with students were held in 1923, and the first student "*Laboratory notebook*" was published in 1924.
- □ In 1931 the laboratory was visited by King CAROL the Second and Prime Minister N. IORGA.

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Department of Mechanics and Strength of Materials

 RESEARCH CENTER IN STRENGTH OF MATERIALS AND SAFETY OF MECHANICAL STRUCTURES, CABLES AND CONDUCTORS
 RESEARCH CENTRE FOR VIBROIMPACTS AND MECHANICAL VIBRATIONS
 MEDICAL ENGINEERING RESEARCH CENTRE

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Department of Mechanics and Strength of Materials

- RESEARCH CENTER IN STRENGTH OF MATERIALS AND SAFETY OF MECHANICAL STRUCTURES, CABLES AND CONDUCTORS. Research fields:
- Strength of Materials,
- Fatigue and Fracture Mechanics,
- Materials testing (metals, plastics, ceramics, cellular)
 under different loading conditions (static, dynamic, creep),
- Integrity and Durability of structures,
- Experimental Stress Analysis (TSA, DIC and photoelasticity)
- Numerical Stress and Strain Analysis.

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Department of Mechanics and Strength of Materials

- RESEARCH CENTER IN STRENGTH OF MATERIALS AND SAFETY OF MECHANICAL STRUCTURES, CABLES AND CONDUCTORS. Research infrastructure:
 - static testing machines,
 - fatigue testing machines,
 - FLIR 40 Thermograph,
 - Digital Image Correlation System Dantec,
 - Instrumented Impact Charpy
 - > NDT ultrasonic,
 - Load cells, data acquisition systems,
 - Additive manufacturing equipment
 - > more than 50 computers,
 - SolidWorks Abagus Digimat Ansys Cosmos M Beasy

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Department of Mechanics and Strength of Materials

- □ RESEARCH CENTRE FOR VIBROIMPACTS AND MECHANICAL VIBRATIONS. Research fields:
 - ≻Mechanics,
 - >Vibrations (linear and non-linear),
 - ≻Acoustics,
 - ≻Nonlinear Dynamics of mechanical systems.

www.siramm.unipr.it

Department of Mechanics and Strength of Materials

MEDICAL ENGINEERING RESEARCH CENTRE. Research fields:

- Biomechanical modelling of human locomotors apparatus,
- Motion and posture analysis of the human body,
- > Reverse engineering, design and numerical analysis of stress distribution

in bone structures, implants, bone/implant assemblies,

- Manufacturing of prosthetic devices and components,
- Development of new testing methods for implants and prosthetic devices.

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Department of Mechanics and Strength of Materials

MEDICAL ENGINEERING RESEARCH CENTRE. Research

infrastructure:

- Modelling and design Laboratory
- Medical Imaging Laboratory
- Motion Analysis Laboratory
- Medical investigations Laboratory explores many practices that arise in the field of usual medical investigations.
- Manufacturing Laboratory CNC Machining and EDM Fabricatio
- Manufacturing Laboratory Rapid Prototyping Fabrication
- LOPIFO Manufacturing Laboratory for implant devices, orthoses and prosthetic devices
- CIDUCOS Testing Laboratory (multiaxial Intron 25 kN testing machine)

SIRAM

www.siramm.unipr.it

Trends on Additive Manufacturing for Engineering Applications

24-28 Jan. 2021

Project No. 857124

- Generally, there are no specific tests for AM materials/structures
- Usual standards are used

Destructive testing to quantify properties of AM (Plastic components), [Forster, 2015]

Test type	Test type	Properties to be obtained and conditions	Standards	
	Determination of tensile properties of plastics	Young modulus, Yield stress, Tensile strength	ASTM D638, ISO 527-2	
Tensile	Determination of tensile properties of fiber reinforced composites	Young modulus, Yield stress, Tensile strength	ASTM D3039, ISO 527-4	
Compression	Compression test	Compressive properties	ASTM D695, ISO 604	
Shear	Plate twist method	In-plane shear modulus	ISO 15310	
Bending	Flexural tests	Flexural properties	ASTM D790, ISO 178	
Dending	Four point bend test	Flexural properties	ASTM D6272	
Fracture mechanics	Determination of fracture toughness	K _{IC,} G _{IC} (Linear Elastic Fracture Mechanics)	ISO 13586, ASTM 5045	
	Determination of J-R curve	J-Integral versus crack growth	ASTM D6068	
Fotiguo tosta	Determination of flexural fatigue	Fatigue strength, S-N curve	ASTM D7774, ISO 13003	
Fatigue tests	Uniaxial fatigue	Fatigue strength, S-N curve	ASTM D7791	
Impact tests	Charpy impact properties (non instrumented and instrumented)	Fracture energy	ISO 179; ASTM D6110	
	Izod Impact properies	Fracture energy	ASTM D256	

1st Winter School on

SIRAMN

Trends on Additive Manufacturing for Engineering Applications

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

There are no particular standards for AM materials!

BRITISH STANDARD INTERNATIONAL STANDARD

ISO 527-2

Second edition 2012-02-15

Plastics — Determinat tensile prop Part 1: General prin Part 2: Test conditions for moulding and extrusion plastics

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Determination of tensile properties of plastics, [ASTM D638, ISO 527-2]

Dog bone specimens

	Specimen type	1A	1B			
l ₃	Overall length ^a	170	≥150			
4	Length of narrow parallel-sided portion	80 ± 2	60,0 ± 0,5			
r	Radius	24 ± 1	60 ± 0,5			
l ₂	Distance between broad parallel-sided portions b	109,3 ± 3,2	108 ± 1,6			
<i>b</i> 2	Width at ends	20,0 ± 0,2				
<i>b</i> 1	Width at narrow portion	10,0 ± 0,2				
h	Preferred thickness	4,0 ± 0,2				
L ₀	Gauge length (preferred)	75,0 ± 0,5	50,0 ± 0,5			
	Gauge length (acceptable if required for quality control or when specified)	50,0 ± 0,5				
L	Initial distance between grips	115 ± 1	115 ± 1			
^a The recommended overall length of 170 mm of the type 1A is consistent with ISO 294-1 and ISO 10724-1. For some materials, the length of the tabs may need to be extended (e.g. $l_3 = 200$ mm) to prevent breakage or slippage in the jaws of the testing machine.						
^b $l_2 = l_1 + [4r(b_2 - b_1) - (b_2 - b_1)^2]^{1/2}$, resulting from l_1, r, b_1 and b_2 , but within the indicated tolerances.						

	Specimen type	1BA	1BB			
l ₃	Overall length	≥75	≥30			
<i>l</i> 1	Length of narrow parallel-sided portion	30,0 ± 0,5	12,0 ± 0,5			
r	Radius	≥30	≥12			
<i>l</i> 2	Distance between broad parallel-sided portions	58 ± 2	23 ± 2			
<i>b</i> 2	Width at ends	10.0 ± 0.5	4 ± 02			
<i>b</i> 1	Width at narrow portion	5,0 ± 0,5	2,0 ± 0,2			
h	Thickness	≥2	≥2			
L ₀	Gauge length	25,0 ± 0,5	10,0 ± 0,2			
L	Initial distance between grips	$l_2^{+2}_{0}$	l ₂ ⁺¹			
NOTE The specimen types 1BA and 1BB are proportionally scaled to type 1B with a reduction factor of 1:2 and 1:5, respectively, with the exception of thickness.						

www.siramm.unipr.it

SIRAM

24-28 Jan. 2021

Project No. 857124

Determination of tensile properties of plastics, [ASTM D638, ISO 527-2]

Figure 1 — Typical stress/strain curves

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Determination of tensile properties of plastics, [ASTM D638, ISO 527-2]

> Specimens preparation

Printer	Temp. Build plate	Temp. Print	Max. Speed	Average Speed	Layer thickness	Infill	Infill density
	[⁰ C]	[⁰ C]	[mm/s]	[mm/s]	[mm]		[%]
Prusa MK3	60	220	80	45	0.15	Rectilinear +/-45 grade	100

SIRAMN¹

Trends on Additive Manufacturing for Engineering Applications

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Determination of tensile properties of plastics, [ASTM D638, ISO 527-2]

Results on tensile testing

PLA	Grey	27/01/202	21				
Tensile test							
Loading speed	5 mm/min						
					Stress a	t 2 strains	
	Thickness h	Width b	Max. load	Tensile strength	ε ₁ =0.0005	ε ₂ =0.0025	Young modulus
Specimen ID	h [mm]	b [mm]	Pmax [N]	σ _r [MPa]	σ ₁ [MPa]	σ ₂ [MPa]	Young modulus E [MPa]
HO	3.95	9.94	1910	48.65	1.82	8.18	3180.00
H45	3.86	9.99	1810	46.94	2.28	9.60	3660.84
H90	3.92	9.95	1910	48.97	2.24	9.25	3505.00
				Î			1
			σ_r	$=rac{P_{ma}}{h\cdot h}$	$\frac{x}{b}$	$E = \frac{\sigma_2}{\varepsilon_2}$	$\frac{-\sigma_1}{-\varepsilon_1}$

European Commission

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Determination of tensile properties of plastics, [ASTM D638, ISO 527-2]

Results on tensile testing \geq

- Similar tensile strength values for 0^o and 90^o orintations, lower value for 45^o \geq
- The higher Young modulus for 45^o \geq

SIRAMNI Trends

Trends on Additive Manufacturing for Engineering Applications

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Determination of tensile properties of plastics, [ASTM D638, ISO 527-2]

Some results for PLA – influence of orientation and direction, comparison with injected molded

<u>http://www.matweb.com/search/datasheet.aspx?matguid=022f6212e6e0415c9f740b3db3d1ae7e&ckck=1</u>
 <u>http://www.corbion.com/media/379249/corbion-purac-ts-pla-portfolio1505.pdf</u>

European Commission

www.siramm.unipr.it

SIRA

24-28 Jan. 2021

Project No. 857124

Determination of tensile properties of plastics, [ASTM D638, ISO 527-2]

Influence of specimen thickness \triangleright

SIRAMNI TI

Trends on Additive Manufacturing for Engineering Applications

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Determination of tensile properties of plastics, [ASTM D638, ISO 527-2]

Influence of filament color

A. Pandzic, D. Hodzic, A. Milovanovic, **INFLUENCE OF MATERIAL COLOUR ON MECHANICAL PROPERTIES OF PLA MATERIAL IN FDM TECHNOLOGY**, Proceedings of the 30th DAAAM International Symposium, 2019

Tensile strength

www.siramm.unipr.it

SIRAMM

24-28 Jan. 2021

Project No. 857124

Determination of tensile properties of plastics, [ASTM D638, ISO 527-2]

Ashby selection diagram

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Determination of tensile properties of plastics, [ASTM D638, ISO 527-2]

Ashby selection diagram

SIRAMN

Trends on Additive Manufacturing for Engineering Applications

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

There are no particular standards for AM materials!

Designation: D5045 – 14

Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials¹

This standard is issued under the fixed designation D5045; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 These test methods are designed to characterize the toughness of plastics in terms of the critical-stress-intensity factor, K_{Ic} , and the energy per unit area of crack surface or critical strain energy release rate, G_{Ic} , at fracture initiation.

1.2 Two testing geometries are covered by these test methods, single-edge-notch bending (SENB) and compact tension (CT).

1.3 The scheme used assumes linear elastic behavior of the cracked specimen, so certain restrictions on linearity of the load-displacement diagram are imposed.

1.4 A state-of-plane strain at the crack tip is required. Specimen thickness must be sufficient to ensure this stress state. priate safety and health practices and determine the applicability of regulatory limitations prior to use.

NOTE 1—This standard and ISO 13586 address the same subject matter, but differ in technical content.

2. Referenced Documents

2.1 ASTM Standards:2

D638 Test Method for Tensile Properties of Plastics

D4000 Classification System for Specifying Plastic Materials

E399 Test Method for Linear-Elastic Plane-Strain Fracture Toughness K_{Ic} of Metallic Materials

E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Determination of fracture toughness of plastics, [ASTM D5045]

Single Edge Notched Specimen

B = 6 mm W = 12 mm a = 6 mm S = 48 mm

Loaded in Three point bending

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Determination of fracture toughness of plastics, [ASTM D5045]

Load – displacement curve

Calculation of fracture toughness

Validity criteria (plain strain condition)

$$B, a, (W-a) > 2.5 \left(\frac{K_Q}{\sigma_y}\right)^2$$

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Printed specimens

www.siramm.unipr.it

24-28 Jan. 2021

Project No. 857124

Determination of fracture toughness of plastics, [ASTM D5045]

Results on fracture toughness

PLA	Grey	27/01/202	21					
Tensile test								
Loading speed	2 mm/min							
	Thickness	Width	Crack length	Adimansia	nal function	Max load	Fracture tou	ghness KO
Specimon ID	THICKNESS	width	a [mm]	Aumansic		PQ [N]	KQ	KQ
Specimen ID	B [mm]	B [mm]		a/W [-]	fl (a/W) [-]		[MPa mm ^{0.5}]	[MPa m ^{0.5}]
0	5.99	12.19	6.00	0.49	10.39	187	92.92	2.94
45	6.01	12.14	6.00	0.49	10.46	213	106.37	3.36
90	6.00	12.07	6.00	0.50	10.55	229	115.93	3.67
					1		1	
$f_I\left(\frac{a}{w}\right) = 6\left(\frac{a}{w}\right)^{1/2} \frac{1.99 - \left(\frac{a}{w}\right)\left(1 - \frac{a}{w}\right)\left(2.15 - 3.93\left(\frac{a}{w}\right) + 2.7\left(\frac{a}{w}\right)^2\right)}{\left(1 + 2\frac{a}{w}\right)\left(1 - \frac{a}{w}\right)^{3/2}}$					K	$P_Q = \frac{P_Q}{B \cdot W^{1/2}}$	$\cdot f_I\left(\frac{a}{w}\right)$	

www.siramm.unipr.it

SIRAMM

24-28 Jan. 2021

Project No. 857124

Printed components (ABS medical)

