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The process of fracture in soft materials




Soft materials

What is soft matter?

Soft polymers Soft tissues
elastomers, colloids, skin, muscles, tendons,
liguid-crystals polymers, blood vessels, organs ...

hydrogels, foams ...

= Soft materials have ...

low initial elastic modulus " and, in addition, soft tissues show ...

high ultimate tensile strain strain hardening
nonlinear stress-strain relationship biphasic nature

time dependent behaviour anisotropic behaviour
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Soft materials

» The key feature of soft matter is entropic elasticity

Brighenti et al. (2017), Int. J. Mech. Sci., 130, 448-457

single polymeric chain

D h
3D amorphous (before and after stretching)

microstructure

= the entropy of a single chain is derived from a
Gaussian probability density function, as a
function of the end-to-end distance r

= elasticity arises through entropic straightening
of polymeric chains, related to the variation of
entropy

= by contrast, in hard solids ...

= elasticity arises from variation of internal
energy due to change in interatomic attractions
(energetic elasticity)

initial configuration

Cauchy stress o/ u

[ An example: the behaviour of skin ]

=

‘ Yang et al. (2015), Nat. Commun., 6(1), 6649

uniaxial stress-strain curve

— rubber

— skin

Stretch A

deformed configuration

the dermis layer is made of
elastin and collagen

limited chain extensibility
(non-Gaussian statistical theory)

J-shaped stress-strain curve
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Fracture process in soft matter

What happens when we tear soft materials?

» atthe mesoscale:
microscopic mechanisms of fracture include
disentanglement by chain pull-out and bond
rupture

cross-link

monomer length bond energy

Fracture energy | [ = nbN3/2 Ub

density of chains number of
monomers

= at the macroscale:
= crack blunting: cracks are severely
deformed upon loading
= the natural crack-tip radius is the
fundamental length scale defining soft
materials by the point of view of fracture

mechanics
: I
natural crack-tip
radius P X W.
c
X

Strain energy density

Fracture Energy I' (N/m)

Spagnoli, Terzano et al. (2019), App!. Sci., 9(6), 1086

Chen et al. (2017), Extrem. Mech. Lett., 10, 50-57

Strain Energy Density (N/m?)

deformed crack-tip
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Fracture in finite strain elasticity

Analysis of the local crack-tip stresses in soft materials

deformed configuration

initial configuration
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Fracture in finite strain elasticity

Analysis of the local crack-tip stresses in soft materials

[ Crack-tip stress fields from FE analysis ]
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Fracture in fluid-saturated soft materials

Analysis of the fracture process in the brain tissue and mimicking hydrogels

= the brain tissue is a soft porous solid, characterised by a
very low stiffness (~ 1 kPa) and complex time-dependent
behaviour

= hydrogels ca be used as synthetic mimicking

materials
composite hydrogel (CH) > canbe obtained by cryogenic 3D
(poly-vinyl-Alcohol (PVA) + Phytagel (PHY)) printing

CH,OH COO0P M+ CH,OH

PHY
\ Q Q Q
N O \
%o ofon ) Ofon LD AN
HO B

= extrusion-based technique
* |iguid to solid phase change of a

AL N R hydrogel ink
Intra-molecular : .
Pva TH hydrogen bonds (|)H Intermolecular u fre eze-t h aw CyC | e fO rmsp hyS ICa |
CHZ—CH]— {CH;CH} hydrogen bonds C rossl | N kS

= resolution: 200 um

5mm 10mm

Forte et al. (2016), Mater. Des., 112, 227-236 Tan et al. (2017), Sci. Rep., 7(1), 16293

58

[ Wire-cutting experiments (brain tissue) ]
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we have employed wire-cutting experiments
to test the fracture properties of:

= porcine brain tissue

= composite hydrogels

= gelatine
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Fracture in fluid-saturated soft materials

Analysis of the fracture process in the brain tissue and mimicking hydrogels
dv=JdV

hp: finite strain model

90, hyperelastic compressible material
incompressible viscous fluid (water)
saturated conditions

modified principal stretch | \ = ]_1/3)\.

%ﬁedmﬁfenals

Terzano, M., Spagnoli, A. et al., submitted,
“Fluid-solid interaction in the rate-dependent failure
of brain tissue and biomimicking gels”

relative fluid velocity | w(x,t) =n,(a, —u)

. - L 1TOW'(N) : 1 k
total and effective P-K stress | S=8'—Jp,C"  §'=——— Darcy'slaw | JF'w =——IVp,
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373
time =0 [ Fluid pressure contours A =)\, ]
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Applications

Numerical simulation of curved insertion paths of needles in tissue mimicking hydrogels Terzano, M., Dini, D. et al., 2020,

“An adaptive finite element model for steerable needles”
* needleinsertion can be treated as a problem of
indentation cutting
= we consider a bio-inspired thin flexible needle with an
asymmetric tip (programmable bevel-tipped needle,
PBN)

hp: finite strain elastic model
Coulomb’s friction
plane strain conditions

KEY-POINT: the propagation path is unknown in advance cohesive zone model

4

iterative FE algorithm
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