SIRAMM Winter School

Opening the design space by removing constraints with Additive Manufacturing and Topology Optimization

Jan Torgersen

Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway

The Micro and Nanoscale Design (MnD) Group

- NTNU- Department of Mechanical and Industrial Engineering
- 6 PhD/ 6 Master Students
- Publications (2017-2020): 44 Journal Articles/ 1
 Patent
- 1 Frinatek grant (similar to FWF Start), 1 ERC grant
- Supported by Stanford University and TU Wien

New possibilities through AM

New possibilities through AM

https://www.youtube.com/watch?v=GUdnrtnjT5Q

Possibilities in design through additive production

Source: Mark Cotteleer and Jim Joyce, 3D opportunity: Additive manufacturing paths to performance, innovation, and growth, Deloitte University Press, http://dupress.com/articles/dr14-3d-opportunity/, accessed March 17, 2015.

Graphic: Deloitte University Press | DUPress.com

Farina.com

Possibilities in design through additive production

Revenue From Final Part Production

Million USD

AM and Data Driven Design

Additive Manufacturing

- No tools
- Minimal material waste
- Low manufacturing constraints
- Production time dependent on material used

Data Driven Design

- Less design restrictions lead to an extended solution space
- Among more solutions there is always a «better» one

norsktitanium.com

Part build size: 900mm x 600mm x 300mm

Layer dimensions: H = 3-4 mm; W = 8-12 mm

Deposition rate: 5–10 kg/hour

Titanium, Nickel Alloys, Tool Steel, Stainless Steel

High Volume Production: 10-20 metric tons annually

http://www.norsktitanium.com/

3ds.com

Slide 22

Courtesy of Norsk Titanium

Norsk Titanium

High Stiffness/ Low Weight

<20k \$/kg

<1k \$/kg

<5 \$/kg

High Stiffness/ Low Weight

Courtesy of Jürgen Stampfl, TU Wien

Structural Optimizatioon- Overview

- The Design Domain
- Objective Function
- Boundary Conditions
- Homogenization of Stress Level
- Minimum Compliance

What is Topology Optimization?

Topology Optimization

Normal stress

What is Topology Optimization?

Topology Optimization

Normal stress

Stress-strain relationship and stiffness matrix for isotropic material

Semenova et al.-Int. J. o. Materials Research, 2009

Truss: High directional stiffness geometrically simple

Shell: High global stiffness, high eigenfrequencies

Key Takeaways

- Use the largest design domain possible
- Use a low density material to maximize I
- Optimization of material cross section important

Stress-strain relationship and stiffness matrix for isotropic material

DNTNU

(4) $x_i \begin{cases} 1 \in \Omega_{mat} / \Omega \\ 0 \notin \Omega_{mat} / \Omega \end{cases}$

Michell Type Structure

"a frame (today called truss) (is optimal) attains the limit of economy of material possible in any frame-structure under the same applied forces, if the space occupied by it can be subjected to an appropriate small deformation, such that the strains in all the bars of the frame are increased by equal fractions of their lengths, not less than the fractional change of length of any element of the space." (Michell 1904)

Maxwell load-path theorem

Tension value in any tension element of length lp

 $\sum l_p f_p - \sum l_q f_q = C - \frac{\text{Constant based on external loads/}}{\text{supports}}$

Compression value in any compression element of length lq

Gradually removing inefficient material from the structure

- · Inefficiencies- low values of stress/strain
- Black and white rendering
- Reference domain Ω in R^2

(1) $\frac{\sigma_e^{vm}}{\sigma_{max}^{vm}} \le RR_i$ — Current rejection ratio Maximum van Mises stress of whole structure

$$RR_{i+1} = RR_i + ER$$
 — Evolutionary rate

(2)

Michell Type Structure

Support Condition

 \square NTNU

- Point load
- Sharp re-entrant corners
- Corners of bodies
- Point restraints

- Manufacturing produces fillet radiuses
- Finite stress value
- Hole in plate mesh, fillet corners, change of cross section,...

$$K_t = \frac{\sigma_{max}}{\sigma_{nom}} = 3$$

Shimels et al- IOP Conf. Ser.: Mater. Sci. Eng. 2017

- Stress singularities do not affect displacement results
- Occur at supports when displacement and stress conditions are mixed

The Minimum Compliance Model

37

Example: Short Cantilever

32x20 four node (hxahedral) elements

Example: Beam structure

- Half of structure modelled (symmetry)
- 60x20 four node (hexahedral) elements

ERR=1%; V=50%

ERR=2%; V=52%

ERR=4%; V=54%

Minimum Compliance vs. Stress Homogenization

120 x48 elements E= 1 Mpa Volfrac= 0,3

Shimels et al- IOP Conf. Ser.: Mater. Sci. Eng. 2017

Compliance based

DNTNU

Stress

Compliance

Stress

Minimum Compliance vs. Stress Homogenization

Stress level

- Material distributed to sustain loads
- Subject to defined boundary and load conditions
- Simpler structures
- Higher computational efforts
- · Layout favors failure criterion and not material to be distributed
- More realistic
- Definition of stress constraint at element level difficult (singularity, local nature, nonlinear behavior)
- Less popular

Compliance minimization

- Optimal volume fraction bounday condition
- Optimal material distributions and induced stress are result of volume fraction
- Complex layout
- Depndent on the amount of material to be distributed
- Not exact in predicting stress and displacements
- Robust
- Lower computational effort
- Most common

http://caess.eu/site/anim/anim2/Anim.html

http://caess.eu/site/anim/anim4/Anim.html DNTNU

Compliance Model- An example

General requirements:

- Stiffness
- Weight
- Multi-purpose use

Housing:

- Wheel bearings
- Planetary gearbox

Connecting:

- Suspension arms
- Brakes
- Electrical motor

1. Design domain

- 2. Properties
- 3. Mesh
- 4. Interactions
- 5. Loads and boundary conditions
- 6. Optimization setup
- 7. Pre-processing
- 8. CAD regeneration
- 9. FE Validation
- 10.AM support generation

eøs

The Workflow

1. Design domain

2. Properties

- Ti6Al4V
- Density
- Elastic Modulus
- 3. Mesh
- 4. Interactions
- 5. Loads and boundary conditions
- 6. Optimization setup
- 7. Pre-processing
- 8. CAD regeneration
- 9. FE Validation
- 10. AM support generation

Material data sheet

Mechanical properties of parts

	As built	Heat treated [6]
Tensile strength [5]		
- in horizontal direction (XY)	typ. 1230 ± 50 MPa	min. 930 MPa (134.8 ksi)
	typ. 178 ± 7 ksi	typ. 1050 ± 20 MPa (152 ± 3 ksi)
- in vertical direction (Z)	typ. 1200 ± 50 MPa	min. 930 MPa (134.8 ksi)
	typ. 174 ± 7 ksi	typ. 1060 ± 20 MPa (154 ± 3 ksi)
Yield strength (Rpo.2) [5]		
- in horizontal direction (XY)	typ. 1060 ± 50 MPa	min. 860 MPa (124.7 ksi)
	typ. 154 ± 7 ksi	typ. 1000 ± 20 MPa (145 ± 3 ksi)
- in vertical direction (Z)	typ. 1070 ± 50 MPa	min. 860 MPa (124.7 ksi)
	typ. 155 ± 7 ksi	typ. 1000 ± 20 MPa (145 ± 3 ksi)
Elongation at break [5]		
- in horizontal direction (XY)	typ. (10 ± 2) %	min. 10 %
		typ. (14 ± 1 %)
- in vertical direction (Z)	typ. (11 ± 3) %	min. 10 %
		typ. (15 ± 1 %)
Modulus of elasticity [5]		
- in horizontal direction (XY)	typ. 110 ± 10 GPa	typ. 116 ± 10 GPa
	typ. 16 ± 1.5 Msi	typ. 17 ± 1.5 Msi
- in vertical direction (Z)	typ. 110 ± 10 GPa	typ. 114 ± 10 GPa
	typ. 16 ± 1.5 Msi	typ. 17 ± 1.5 Msi
Hardness [7]	typ. 320 ± 12 HV5	

[5] Tensile texting according to ISO 6892-1:2009 (B) Annex D, proportional test pieces, diameter of the neck area 5 mm (0.2 inch), original gauge length 25 mm (1 inch).

- [6] Specimens were treated at 800 °C (1470 °F) for 4 hours in argon inert atmosphere. Mechanical properties are expressed as minimum values to indicate that mechanical properties exceed the minimum requirements of material specification standards. ASTIN F1472-08. By fulfilling these minimum values, also the specifications of standards ASTIM B348-09 and ISO 5832-3:2000 are meet.
- [7] Vickers hardness measurement (HV) according to EN ISO 6507-1 on polished surface. Note that measured hardness can vary significantly depending on how the specimen has been prepared.

4/5

- 1. Design domain
- 2. Properties
- 3. Mesh
 - Structured Hexahedral elements
 - 1 070 000 elements
- 4. Interactions
- 5. Loads and boundary conditions
- 6. Optimization setup
- 7. Pre-processing
- 8. CAD regeneration
- 9. FE Validation
- 10. AM support generation

- 1. Design domain
- 2. Properties
- 3. Mesh
- 4. Interactions
 - Suspension points
 - Mounting bracket
 - Brake caliper
- 5. Loads and boundary conditions
- 6. Optimization setup
- 7. Pre-processing
- 8. CAD regeneration
- 9. FE Validation
- 10. AM support generation

- 1. Design domain
- 2. Properties
- 3. Mesh
- 4. Interactions
- 5. Loads and boundary conditions
 - Wheel bearing reaction forces
 - Mapped analytical fields
 - Four quasi-static scenarios
- 6. Optimization setup
- 7. Pre-processing
- 8. CAD regeneration
- 9. FE Validation
- 10. AM support generation

- 1. Design domain
- 2. Properties
- 3. Mesh
- 4. Interactions
- 5. Loads and boundary conditions
- 6. Optimization setup
 - Sensitivity-based algorithm
 - Minimum Compliance problem
 - Weight target
- 7. Pre-processing
- 8. CAD regeneration
- 9. FE Validation
- 10. AM support generation

- 1. Design domain
- 2. Properties
- 3. Mesh
- 4. Interactions
- 5. Loads and boundary conditions
- 6. Optimization setup
- 7. Pre-processing
 - Filtering
 - Smoothing
- 8. CAD regeneration
- 9. FE Validation
- 10. AM support generation

Front

revolve Jørgen Eliassen NTNU 2017

DASSAULT SYSTEMES

- 1. Design domain
- 2. Properties
- 3. Mesh
- 4. Interactions
- 5. Loads and boundary conditions
- 6. Optimization setup
- 7. Pre-processing
- 8. CAD regeneration
 - Modifications for mounting holes
 - Inclusion of additional details (motor mount, seal slots,...)
- 9. FE Validation
- 10. AM support generation

- **Design domain** 1.
- 2. **Properties**
- Mesh 3.
- Interactions 4.
- Loads and boundary conditions 5.
- **Optimization setup**
- Pre-processing 7.
- CAD regeneration 8.
- **FE Validation** 9.
 - **Dimensioning load scenario** ٠
 - Extreme load scenario •
 - Non-linearites (contact, pretension) ٠

10. AM support generation

S, Mises

5.000e+01

918e+0

669e+01

2e+0

5e+01

3e+01

363e+00

.200e+00

3.606e-02

Rear

NTNU

revolve NTNU 2017

Front upright post CNC-machining

Rear upright post CNC-machining

Sussener Prevolve NTNU 2017

Compliance Model- An example

Dynamic wheel loads Tire-track interaction Weight transfer

Figure 3.1: Load scenarios during FSG, longitude and latitude data from INS plotted. The car drives in the clockwise direction. Acc = Acceleration, LHT = Left Hand Turn, RHT = Right Hand Turn

Compliance Model- An example

Material:

EOS Ti6Al4V/ EOS Al10MgSi

Discretization

- Element type: Structured hexahedral
- Mesh method:
- Top-down combined with bottom-up

Loads: From tire tests - wheel bearing reaction forces used in optimization is calculated in collaboration with SKF

Abagus load definition: 4 independent guasi-static load scenarios defined with linear

Design responses:

Objective function:

perturbation steps

Strain energy (all steps) Weight

Minimum compliance

Constraint: Weight target 350g

Upright	Iterations	Total iteration time [h]	TO raw weight [g]	Weight after regeration [g]
Front left	72	95.2	374.6	577.9
Rear left	56	59.4	323.6	532.7
Rear right	49	46.3	324.2	524.5

Compliance Model- Material Selection

Figure 2.6: Comparison between upright in AlSi10Mg and Ti6Al4V, Skoglund (2019)

Figure 4.11: Rear left upright

Figure 4.12: Rear right upright

What is performance?- the objective Efficiency Flow resistance Material used Stiffness/Weight Corrosion resistance Dissassembly Conductance Manufacturing complexity Surface area Power

Eigenfrequency

Transmittance

Accessibility

Number of parts

Cost

Beyond stiffness- Solar Concentrator

Common tracker

Tracking integration with beam steering lens array

- No Rotation
- Low Physical Footprint
- Low Power, Fast, Accurate
 Tracking

(1) Maximize efficiency in redirecting sunlight $\uparrow \eta$

Ingoing/ Outgoing intensity

- (2) At a set divergence angle $\downarrow \Theta_{max}$
 - Deviation of outgoing rays from surface normal
- (3) At a set cost/complexity of the system \downarrow \$
 - **#** Parts/ Complexity of movement

Boundary Conditions

Objective Function

Maximize efficiency in redirecting sunlight $\uparrow\eta$

Minimize divergence of ingoing sunlight $\downarrow \Theta_{max}$

Minimize the cost/complexity of the system \downarrow \$

- Number of lens arrays
- Number of moving parts
- Number of sliding interfaces

Next generation PEMFCs

O'Hare et al.- Wiley 2016

The Gas Diffusion Layers

Gas Diffusion / Catalyst Layer Electrolyte H₂ Н, H₂ H₂

Gas Diffusion / Catalyst Layer

Anode Adapted from Prinz- ME260 Lecture Slides

Fuel

DNTNU

The optimum Gas Diffusion Layer

(1) Maximize fuel cell power density ↑p

Determined by activation losses, ohmic losses and transport losses

(2) At a given current density reange $i_{curr.1}$

Defines the dominating losses

(3) At given design constraints $\downarrow d$, $\uparrow T$, $\uparrow \sigma$, $\uparrow D^{eff}_{H2O}$, $\uparrow D^{eff}_{air}$

Torgersen and Bock- ECS Prime 2020

The optimum Gas Diffusion Layer

Data from Niblett et al.- Electrochem Soc 2020

The optimum Gas Diffusion Layer

2020.10.05 13:56 F

8

Compo

1 mm

D8,3 x80

Design for Dissassembly

Daehn et al.- Envir. Sci. and Techn. 2017

Design for Dissassembly

Design for Dissassembly

- (1) Minimize obstacle region $\downarrow O_{si}$ by changing extraction direction D_i
 - Determined by size of Target component T
- (2) At a given number of shells S_i
 - Given by the design
- (3) At allowed number of split lines
 - Sets the amount of dissassembly operations

Fukushige- Springer 2017

Objective Function

Conclusion

- Additive Manufacturing offers new solutions
- Topology Optimization can infuse Innovation in Product Design
- Million design iterations at low cost
- Readily available: Lightweight and stiff organic designs
- Future possibilities: solar trackers, next generation fuel cells, material recycling

NTNU 2017

