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Analytical solutions in LEFM

Williams’ solution

Williams has proposed a biharmonic stress function that can be used for  a 

through thickness plane cracked body with arbitrary shape, size and tractions 

applied to the outer boundaries. The solution is valid either in plane strain or 

idealized plane stress. 
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Westergaard’s solution
 

2a 

y 

x 

x 

xy 

y 

 

 

  

 

 

r 

Complex stress function

22
)(

az

z
zZ

−


=



z* = z - a = re i 







−===

−





2
sin

2
cos

222
)( 2

1






i
r

K
e

r

K

z

K
zZ I

i
II

z → ,   Z(z) =  Z(z) is real for x  >  a 

For any other geometry and loading Z(z) has to be changed.

WELLS, A., A., POST, D., The Dynamic Stress Distributions Surrounding a Running Crack - A 

Photoelastic Analysis, Proceedings SESA, Vol. 16, 69-92 and discussion by Irwin, G., R., 93-96, 

1958
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SIH, G.C., On the Westergaard Method of Crack Analysis, Journal of Fracture

Mechanics, Vol. 2, pp. 628-631, 1966.

Starting from the Goursat-Kolosov solution presented by Muskhelishvili

Sih’s solution
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Eftis-Liebovitz solution
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EFTIS, J., LIEBOWITZ, H., On the Modified Westergaard Equations for Certain

Plane Crack Problems, Journal of Fracture Mechanics, Vol. 8, 383-391, 1972.
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Sanford’s solution

SANFORD, R.J., A Critical re-examination of the Westergaard method for solving

opening mode problems. Mechanics Research Communications, 6, 289-294, 1979.
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DALLY, J.W., SANFORD, R.J., Strain gage methods for measuring the opening-

mode stress intensity factor “KI”. Experimental Mechanics, 27, 391-388, 1987.

BERGER, J.R., DALLY, J.W., SANFORD, R.J., Extend of validity of three-parameter

crack-tip strain fields. Proceedings SEM Spring Conference on Experimental

Mechanics, Milwaukee, Wisconsin, 572-578, 1991.

CHONA, R., FOURNEY, W.L., SANFORD, R.J., SHUKLA, A., Determining stress

intensity factors for running cracks. Modeling Problems in Crack Tip Mechanics,

Waterloo, Ontario, Canada, 207-215, 1983.



Strain gages evaluation of SIFs
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In a representation with 6 terms, N = M = 2, the unknown coefficients are:

Ao , A1 , A2 , Bo , B1 , B2.
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Experimental evaluation of SIFs

Aa steel plate with central crack, electro

discharged with a wire of thickness of 0,15 mm.

The central crack is of length 2a = 20 mm. The

elastic constants of the material are:  = 0,24

and E = 2,19105 MPa. With a known Poisson’s

ratio  we establish the angle  = 64º and angle

 = 76º.

We chose the distances from the crack tip in points

1 and 2, as being 5 mm and 10 mm, symmetric with

respect to the crack. Another strain gauge was

positioned at r = 5 in point 3, close to the other tip of

the crack.

Strain gages LY11 Höttinger strain gauges with a

gauge length of 0,6 mm, resistance R = 120 ,

and a constant k = 1,87.

.744424,0 21
0

−
 = rAE x

= 20exp AK I



F  [kN] 80 90 100 110 120 

  [MPa] 156,8 176,5 196,1 215,7 235,4 

KIth [MPa mm ] 900,3 1013,4 1125,9 1238,5 1351,6 

1 781,6 885,5 982,7 1088,3 1182,3 

KIexp [MPa mm ]    2 897,8 1002,7 1121,6 1205,6 1294,2 

3 625,1 715,4 807,1 896 989,1 

 

The experimentally established SIFs are in a very good correlation with the

theoretical values in point 2, not so close to the crack tip.

In point 1, probably influenced by the process zone, the strains and the SIFs

are diminished – it looks like the LEFM equations are not valid any more.

It is important to underline that for point 3, where an arbitrary angle of

 =  = 45º

the obtained SIFs are much smaller than in point 1 which is at the same

distance from the crack tip.

mmmm





Aluminum plate E = 61000 MPa , and  =

0,3.

The plate has the following dimensions:

• height H = 580 mm,

• width W = 240 mm

• thickness t = 2,5 mm.

The through thickness crack has a width of

0,2 mm. The length of the central crack is

the same

2a = 48 mm,

The dimensions of the width of the plate are

changed as to obtain:

2a/W = 0,2 ;

2a/W = 0,3

2a/W = 0,4.

Along  radial  lines  defined  by  the  angles  

of   = 0°;  = 45°;  = 90° and  = 135°, the 

strains are measured on each direction in 

four points  with Höttinger gauges 0,6/120 LY 

13, compensated for aluminum, a gage 

length of  0,6 mm and the constant  k = 1,65 

 1,5 % 
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Photoelastic (2D and 3D) evaluation of SIFs

2D Photoelasticity 

POST, D., Photoelastic Stress Analysis for an Edge Crack in a Tensile Field,

Proceedings SESA, 12, 99-116, 1954.

WELLS, A., A., POST, D., The Dynamic Stress Distributions Surrounding a Running

Crack - A Photoelastic Analysis, Proceedings SESA, 16, pp.69-92 and discussion by

Irwin, G., R., 93-96, 1958.

COTTERELL, B., On Brittle Fracture Paths, Int. J. Fract. Mech., 1, 96-103, 1965.

BRADLEY, W.B., KOBAYASHI, A.S., Fracture Dynamics. A Photoelastic Investigation,

J. Engng. Fract. Mech., 3, 317-332, 1971.

THEOCARIS, P.S., GDOUTOS, E.E., A Photoelastic Determination of KI Stress

Intensity Factors, J. Engng. Fract. Mech., 7, 331-339, 1975.

DALLY, J.W., SANFORD, R.J., Classification of Stress Intensity Factors from

Isochromatic Fringe Pattern, Experimental Mechanics, 441-448, December 1978.

SANFORD, R.J., DALLY, J.W., A General Method for Determining Mixed-Mode.

Stress Intensity Factors from Isochromatic Fringe Patterns, Engng. Fract. Mech., 11,

621-633, 1979.

SMITH, C.W., Use of Photoelasticity in Fracture Mechanics, in Mehanics of Fracture,

G.C. Sih, Ed., vol. 7, ch. 2, pp.163-187, Martinus Nijhoff, 1981.

SMITH, C.W., WIERSMA, S.J., Stress-Fringe Signatures for Propagating Cracks,

Engng. Fract. Mech., 23, pp. 229-236, 1986.



SMITH, C.W., KOBAYASHI, A.S., Experimental Fracture Mechanics, Ch. 19 of

Handbook on Experimental Mechanics, SEM, Inc., A.S. Kobayashi, Ed., Prentice-

Hall, Inc., Englewood Cliffs, NJ, pp. 891-956, 1987.
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Photoelastic materials are birefringent, that 

is, they act as temporary wave plates, 

refracting light differently for different light-

amplitude orientations, depending upon the 

state of stress in the material.

Photoelasticity is a nondestructive, whole-field, graphic stress-analysis technique based on 

an optomechanical property called birefringence, possessed by many transparent polymers.



Tardy Compensation Method

The analyzer alone is rotated through some angle  until a neighboring (dark) 

isochromatic of integer order n passes through the point in question.

The fractional fringe order is then equal to the ratio  / , as will be 

shown subsequently.

Therefore the value of N at the point is

N = n ±  /  .



Fringe Order Multiplication



POST, D. Fringe multiplication in three

dimensional photoelasticity, Journal of

Strain Analysis, 1, 380–388, 1966.

Since the slices are thin, and the number of fringes will be proportional to the slice 

thickness, it is necessary to optically increase the number of fringes for accurate 

analysis. 





Initial SIF evaluation



r 

[mm] 

n 

[fringes] 
max 

[MPa] 

KAP 

[MPa mm] 

r a  

 

K aAP    

1 1.51 1.51 7.570017 0.182574 2.757165 

2 1.125 1.125 7.976042 0.258199 2.905048 

3 0.87 0.87 7.554397 0.316228 2.751475 

4 0.735 0.735 7.369487 0.365148 2.684127 

5 0.69 0.69 7.734888 0.408248 2.817214 

6 0.66 0.66 8.104748 0.447214 2.951925 

7 0.615 0.615 8.157256 0.483046 2.97105 

8 0.58 0.58 8.224186 0.516398 2.995427 

9 0.54 0.54 8.121476 0.547723 2.958018 

10 0.52 0.52 8.243721 0.57735 3.002542 
 

0.00 0.10 0.20 0.30 0.40 0.50 0.60

r/a
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  
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A
P

The general recommendation

is that

Τ𝑟 𝑎 =0.2…0.5

[MPa mm]r aK aAP  



Remote stress 

 [MPa] 

Theoretical SIF 

KIth [ ]MPa mm  

Experimental SIF 

KIexp [ ]MPa mm  

Error 

[%] 

0.283 5.42 5.74 5.9 

0.377 7.22 7.26 0.6 

0.471 9.03 10.77 19.3 

0.566 10.83 11.09 2.4 
 

At four different remote unit stress levels the error between the experimental 

and theoretical SIF is calculated and presented.

Experimental SIFs are greater that the theoretical SIFs, and the error was 

between 1 and 20%.

[ ]MPa mm[ ]MPa mm



Mixed Mode (Bimaterial) SIF evaluation





2 polyurethane PSM-4  E2 = 4 MPa 2 = 0.5 

1 steel E1 = 210000 MPa 1 = 0.3



dark field – integral fringes are dark

Polarizer and analyzer have crossed 

polarizing planes.

bright field – integral fringes are bright

Polarizer and analyzer have parallel 

polarizing planes.

crack tip𝜃𝑚



K* greater than the theoretical one, as errors resulted when establishing the 

value   𝜃𝑚
𝑜







White field (integral 

fringes are white)



Dark field (integral 

fringes are dark)







❑ The frozen stress method was introduced by Opel (1936). It involved utilizing 

the fact that some photoelastic materials exhibited essentially diphase 

mechanical response to change in temperature. 

❑ Stress freezing materials possess the special characteristic of possessing a 

temperature, Tc, called the critical temperature, which is in the neighborhood of 

the glass transition temperature of the material. 

❑ Material will be slightly viscoelastic at room temperature, but when heated 

above Tc, the viscous coefficient vanishes and the material becomes linearly 

elastic with an elastic modulus of about one six hundredth of its room 

temperature value and the material becomes incompressible. 

❑ Furthermore, the stress fringe sensitivity of the material above Tc increases to a 

value of some 20 times the value at room temperature. 

❑ Then, upon unloading, fringe recovery will be small due to the relatively low 

fringe sensitivity at room temperature, and the fringes produced above Tc will be 

retained along with the deformations but no live stress results. 

❑ Consequently the model may be sliced into thin slices and analyzed as in two 

dimensional photoelasticity, but with the three dimensional effect embedded in 

the fringes. 

3D (frozen stress)  Photoelasticity 





Large volumes of particulate composites are finding use in many 

applications in the commercial and military transportation industry.

One of these is solid propellant, which consists of hard polyhedral  

particles embedded in a soft rubber matrix which stiffens at low 

temperatures. The presence of defects, mainly cracks, in structures 

composed of these materials has become important as a result of 

efforts to extend the life of these structures for economic reasons.

When a crack grows in such a material, the matrix ahead of the crack 

tip stretches, separating into strands and producing severe blunting and 

moving the hard particles above and below the crack plane until the 

crack breaks the strands to advance through the stretch zone. 

This blunt-growth-process is repeated, producing a highly non-linear 

phenomena. At very low temperatures, the stretching of the matrix is 

suppressed, producing an embrittling effect.



All test models were cast at Measurements Group (Raleigh, NC) in molds

provided by Virginia Tech using PLM-4BR stress freezing material manufactured 

by Measurements Group.



• The heating in the oven is done with 

about 3,9-4,4 C/hour up to a 

temperature with about 6 C above Tc

(that is 110 C). 

• We keep the model in the oven at 

this temperature for about three 

hours to get an uniform temperature 

field. The cracks were grown under 

internal pressure above critical 

temperature to desired size (or 

assumed to be), 

• Pressure was dropped to about 0,04-

0,05 MPa and stress freezing was 

completed by cooling down with 

about 0,45 C/hour when going 

through the critical temperature, and 

then faster. 

The whole thermal cycle lasts for about 

one week. 

Stress freezing procedure



White field (integral 

fringes are white)

Dark field (integral 

fringes are dark)



Dark field (integral 

fringes are dark)

White field (integral 

fringes are white)

uncracked fin



Not conclusive which position is “worse”

Pure bending calibration beam



After cooling, thin slices (around 1 

mm thickness) were removed 

normal to the crack front and 

analyzed at maximum crack depth 

and in certain locations along the 

crack front, finally obtaining the 

values of the normalized stress 

intensity factors by using a two 

parameter algorithm valid within the 

linear elastic fracture mechanics 

(LEFM) constrains.



The symmetric crack, remained planar during growth and exhibited only pure

Mode I values around the crack front. Moreover, it conformed to the definition of a

Class I crack as described by Cotterell.

The second type of crack emanated from the point of confluence of the main fin

tip radius (R11 mm) with a much smaller edge radius (R1,3 mm). This latter crack

was non-planar and generally contained, prior to turning, mixed mode SIF values at

various locations along its border except near the fin surface where Mode I

prevailed. These cracks, due to turning, grew in arbitrary directions until turning

eliminated the shear mode effects and so were essentially Class II cracks, as

described by Cotterell, grew until the shear modes were eliminated, after which the

cracks grew as Class I cracks exhibiting pure Mode I loading. These latter cracks

are referred to here as off-axis cracks and the present discussion will focus on

these cracks.

In the present study all off-axis cracks were analyzed for SIF values by using

dimensions of planar projections of the crack fronts as their semi-elliptical

dimensions since the out-of-plane dimensions of the crack surfaces were small

(except for river markings), and eventually disappeared with the shear modes

during growth.



Crack surface non-planar while turning in eliminating shear modes



















Fringe at the tip of a turning crack; a) first order; b) third order multiplication.

a) b)



Model 2 - off-axis inclined

a  = 9,48 mm; a /c  = 0,66; a /t  = 0,26

third order multiplication - all data
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Model 2 - off-axis inclined

a = 9,48 mm; a /c = 0,66; a /t = 0,26

third order multiplication - data for extrapolation
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Model 8, off-axis inclined, 

a /c  = 0,59, a /t  = 0,34, middle slice 

y = 1.00x + 1.99
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                                             Table 4. Normalized SIFs for different crack geometries. 

Loads a Crack Description b (dimensions in mm) F1 
c middle slice 

 

 

P = 88,97 N 

pmax = 0,049 MPa 

psf = 0,035 MPa 

 

 

P = 88,97 N 

pmax = 0,103 MPa 

psf = 0,049 MPa 

 

 

P = 88,97 N 

pmax = 0,138 MPa 

psf = 0,049 MPa 

 

 

 

 

 

 

 

P = 88,97 N 

pmax = 0,111 MPa 

psf = 0,041 MPa 

 

 

 

 

 

 

P = 88,97 N 

pmax = 0,103 MPa 

psf = 0,049 MPa 

 

 

P = 88,97 N 

pmax = 0,110 MPa 

psf = 0,049 MPa 

Model 4 

Off-axis inclined 

a = 8,71  a = 2,18 

c = 11,15  c = 3,02 

a/c = 0,78     a/t = 0,23 

Model 8 

Off-axis inclined 

a = 12,50  a = 3,4 

c = 21,1  c = 10,4 

a/c = 0,59     a/t = 0,34 

Model 6 

Off-axis straight in 

a = 11,60  a = 4,67 

c = 17,00  c = 10,66 

a/c = 0,68     a/t = 0,31 

Off-axis straight in 

a = 11,23  a = 5,86 

c = 13,00  c = 6,65 

a/c = 0,86     a/t = 0,30 

Model 7 

Off-axis straight in 

a = 15,60  a = 10,0 

c = 26,45  c = 17,57 

a/c = 0,59     a/t = 0,42 

Off-axis straight in 

a = 13,90  a = 4,05 

c = 18,65  c = 10,17 

a/c = 0,74     a/t = 0,37 

Model 8 

Off-axis straight in 

a = 7,90  a = 2,8 

c = 13,35  c = 7,75 

a/c = 0,59     a/t = 0,21 

Model 9 

Off-axis straight in 

a = 25,10  a = 18,7 

c = 39,4  c = 33,8 

a/c = 0,64     a/t = 0,68 

 

 

       F1 = 1,90 

       F2 = 0,48 

 

 

 

 

1,99 

 

 

 

 

1,72 

 

 

 

1,86 

 

 

 

 

1,58 

 

 

 

1,87 

 

 

 

 

1,93 

 

 

 

 

1,50 

a P = axial compressive load; pmax = maximum internal pressure to grow crack; psf = stress freezing 

pressure. 



Marşavina L., Constantinescu D.M., Experimental and numerical crack
growth in a special geometry, 21st International Congress of Theoretical and
Applied Mechanics, Section SM9L_10864 Fracture and crack mechanics
(CD), August 15-21, 2004, Warsaw, Poland

FRANC 2D propagation



FRANC 2D propagation



Constantinescu D.M., Bocaneala B., Marsavina L. (2006) Three-Dimensional 
Experimental and Numerical Sifs and Crack Growth. In: Gdoutos E.E. (eds) Fracture of 
Nano and Engineering Materials and Structures. Springer, Dordrecht. 
https://doi.org/10.1007/1-4020-4972-2_577
Section 25_2 Mixed-Mode Fracture CD, 16th European Conference of Fracture 

(ECF16), 3-7 July, 2006, Alexandroupolis, Greece

FRANC 3D numerical model
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Experimental middle slice

Experimental surface at 20 degrees
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https://doi.org/10.1007/1-4020-4972-2_577


Has photoelasticity a future?



Optical methods used in Fracture Mechanics

o The optical techniques for strain measurement mainly include 

Moiré methods

geometric phase analysis (GPA)

caustics

strain gradient method

digital image correlation (DIC) 

electronic speckle pattern interferometry (ESPI) 

coherent gradient sensing (dynamic fracture) etc.

o Moiré interferometry (virtual reference grating 4000 lines/mm; sensitivity 0.25 

m/fringe)
Post D., Han B., Ifju P. (1994) Moiré Interferometry. In: High Sensitivity Moiré. 
Mechanical Engineering Series. Springer, New York, NY.

Moiré interferometry is capable of measuring in-plane displacements with 
very high sensitivity. 

Digital Image Correlation (DIC), 

Speckle patterns are usually applied by spraying the specimen or component 

surface with contrasting paints (i.e. black, white and grey). The strain resolution 

is typically 0.01%. Digital 3D systems are available allowing the dynamic 

measurement of full-field 3D displacements and subsequent analysis of strains.

Moved to microDIC.



Behavior and damage of composites

The skins and sandwiches have the
following configuration:

10 – polyester orange gelcoat and three
laminae as 1 x mat 300 gr/m2, 1 x roving
400 gr/m2, 1 x mat 300 gr/m2, all of them
being impregnated by ortophtalic polyester
resin;
11 – polyester white gelcoat and three
laminae as 1 x mat 300 gr/m2, 1 x roving
500 gr/m2, 1 x mat 150 gr/m2, all of them
being impregnated by polyester resin
Crystic 2-446 PAVL;
12 – polyester green gelcoat 1401 and two
laminae as 1 x mat 100 gr/m2 and 1 x mat
450 gr/m2, being impregnated by
ortophtalic polyester resin;
13 –sandwich with the sequence of 12 and
two Coremat cores of 2 mm each, followed
by a 1 x mat 450 gr/m2;

14 – sandwich with two skins 11 and a 12
mm thickness polyurethane core of 40
kg/m2 is done a material denoted;
9 – sandwich with two 3 mm thickness mat
skins; the core is polyurethane of 200
kg/m3 and a thickness of 12 mm.



The tested sandwich composites have the skins made from mat having

randomly disposed fibers with 50 mm length with one layer of white polyester

gelcoat, one layer of mat of 300 g/m2, one layer of roving of 500 g/m2 and

another layer of mat (from the top to the core). The foam is rigid polyurethane of

200 kg/m3. The bonding of the foam to the skins was done using a polyurethane

tricomponent adhesive and an initial delamination of 70 mm length was

produced by including a 70 mm non adherent film on both upper and lower

interface zones. The adhesive layer has the thickness 0.2 – 0.25 mm.

MODE I TESTING OF SANDWICH COMPOSITES

Samples prepared for testing 



Lloyd testing machine and the ARAMIS system 

The sample is loaded in traction with controlled displacement of the crosshead of 

0.5 mm/min. During the test the following parameters are recorded:

• Initial delamination lengths (upper and lower). Initial delamination lengths are 

measured using DIC method and the ARAMIS data acquisition and post processing 

software.

• Force and displacement values are recorded during the whole test using the 

Nexygen data acquisition and post processing software provided by LLOYD.

• Position of the crack tip is monitored throughout the whole test using DIC method 

and ARAMIS data acquisition and post processing software.

• Local strains at the crack tip and CTOD are evaluated using DIC by defining a 

local measurement point at the crack tip.



Average maximum strain and the average crack tip opening displacement 

(CTOD) at the moment of sudden crack propagation 

Miron, M.C., Constantinescu, D.M., Strain fields at an interface in a

sadwich composite, Mechanics of Materials, 43, pp. 870-884, 2011.



Strain variation at the crack 
tip before and after unstable 
crack propagation 

Pictures of the 
specimen from Test 1 

and DIC analyses 
before and after the 

second crack 
propagation.



Strain variation in succesive measuring points in the core

Test 1
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Placement of virtual strain 

gages along the interface

Experimentally measures 

strain variation in the core 

strain gages

Miron, M.C., Study of the delamination and 

damage phenomena in laminated and 

sandwich composites, PhD Thesis, 

University POLITEHNICA of Bucharest (in 

Romanian), 2011.



Behavior and damage of nanocomposites

Shear mixer Thinky model ARE -250, Japan Sonicator SONICS model VCX 750, USA

Programmable oven with vacuum, MEMMERT VO400, UK, with electronic 

module to program up to 40 types of curing cycles through a laptop. 

Three types of Bayer multi-wall carbon nanotubes (MWNT): Baytubes C 150 P, 

Baytubes C 150 HP, Baytubes C70 P (long nanotubes 0,2-1 m).

Nanopowders from Sigma-Aldricht



Technology used to fabricate 
nanocomposites used at 
Rensselaer Polytechnic Institute 
(US) transferred to UPB.

Tensile specimens poured in a 

silicon mold produced at UPB.



Nanopowder Observations

Iron (II,III) oxide Fe3o4

(Magnetite)

< 50 nm (TEM)

purity greater than  98% 

Aluminium Oxide Al2O3

(Alumina)
< 50 nm

Zinc Oxide OZn < 100 nm

Silicon Dioxide O2Si (Silica)
5-15 nm

purity greater than 99.5 % 

Tine (IV) Oxide O2Sn < 100 nm

Cobalt (II,III) Oxide Co3O4

< 50 nm

purity 99.5 % 



Mises strains in epoxy SEN 

specimen before failure

Mises strains in epoxy with 

MWNT SEN specimen before 

failure



Mechanical

properties

Nanofillers

E

[MPa]

Ultimate 

strength

[MPa]

Elongation at 

failure

[%]

Pure epoxy
3470 71,37 2,39

3115 77,07 4,19

CNT 0,1 % 3298 80,38 4,10

CNT 0,2% 3230 78,82 3,95

CNT 0,3%
3603 81,07 3,93

3445 81,65 4,09

0,1 % Al2O3

3263 81,83 3,9

3331 85,60 4,11

3345 85,13 3,96

0,3 % Al2O3

3632 57,27 1,9

3294 80,98 4,23

0,5 % Al2O3

3394 84,06 4,09

3648 85,03 4,11

5 % Al2O3 3922 85,51 3,91

0,3 % Fe3O4 3310 51,58 1,78

0,3 % ZnO 3547 81,59 4,02

0,3 % CO3O4 3420 82,26 3,91

0,3 % SnO2 3459 81,59 3,91

0,3 % SiO2 3526 83,02 3,92

1 % SiO2 3632 85,74 3,65

3 % SiO2 3437 85,02 3,82



Mechanical 

properties

Nanofillers

E

[MPa]

Ultimate 

strength

[MPa]

Elongation at 

failure

[%]

KIC

[MPa ]

Pure epoxy 4685 82,98 3,95 3,08

0,1 % Al2O3 4370 83,71 4,30 3,76

0,3 % Al2O3 4425 81,47 4,35 4,19

0,5 % Al2O3 4235 88,58 3,80 4,03

4505 80,45 4,55 3,48

0,1 % SiO2 3215 77,38 4,35 2,82

0,3 % SiO2 4525 83,81 3,40 3,50

0,5 % SiO2 4290 84,13 4,15 2,98

4355 83,20 4,35 3,80



Failure surface for pure epoxy specimen

Failure surface for MWNT SEN specimen



Conglomeration of Al2O3 nanoparticles 

for 0,3 %wt

Carbon MWNT with measured diameter 

between 30-45 nm

Cavities 

induces by air 

bubbles on the 

surface

Dispersion of 

alumina in the 

bulk epoxy 

material for 

0,5 %wt 



ASTM D3528-96 (2008): Standard test method for strength properties of double

lap shear adhesive joints by tension loading

EN 14509 (2006): Self-supporting double skin metal faced insulating panels –

Factory made products - Specifications

ASTM C273-00 (2000): Standard test method for shear properties of sandwich

core materials

ASTM C393-00 (2000): Standard test method for flexural properties of sandwich

constructions

Shear behavior of sandwich geometries
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“butterfly” specimen 
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loading device

testing arrangement 

for creep in shear



ANALYZED GEOMETRY

• foam thickness

tc = 6 mm, 10 mm, and 15 mm

• overlap length

lc = 25 mm and 50 mm

• adherents thickness and width

t1 = t2 = 4 mm, b = 25 mm

• adhesive thickness

ta = 0.15 mm

Material Young’s 

Modulus 

[MPa]

Poisson’s 

Ratio

[-]

Ultimate 

strength

[MPa]

Face 

sheet

Aluminium alloy 70000 0.33 320

Core Foam 325 kg/m3

(NECURON) 

220 0.3 4.2

Adhesiv

e

AW 106

(HUNTSMAN)

1350 0.45 33c
av

lb

F

2
=



Experimental evaluation of the failure 

Failure initiates in the foam at the critical 

location, close to the inner adherent
In few cases failure is produced in the 

foam on both sides of the inner adherent

Outer adherent may bend after testing



Cohesive failure in the foam, close to the adhesive layer

The deformation of the double lap joint was obtained using the 3-dimensional 

digital image correlation (3D-DIC) technique. 

The full-field surface displacement and strain distributions obtained provided 

detailed information about the deformation of the overlap.

The ARAMIS system was calibrated using a 35 x 28 mm caliber and a facet of 27 x 

15 pixels; thus a 44 % facet overlap has been obtained.

F.A. Stuparu, Delamination phenomena assessment for adhesive bonded joints, 

PhD thesis, University POLITEHNICA of Bucharest (in Romanian), 2015.



overlap 25 mm – foam thickness 6 mm

Major strain

Shear angle



overlap 25 mm – foam thickness 15 mm

Mises strain



overlap 50 mm – foam thickness 6 mm
Mises strain



overlap 50 mm – foam thickness 15 mm

peeling strain



Different foams have been selected for
this study, having the densities of 35, 93, 
100, 140 and 325 kg/m³

The tested foams are used for the 
construction of sandwich panels used for 
different boat models

D.A. Apostol, Investigations concerning 

the behaviour and damage of composites 

made with rigid and semirigid foams, PhD 

thesis, University POLITEHNICA of 

Bucharest (in Romanian), 2011.



The deformation of foam specimens in compression was obtained using the 3-

dimensional digital image correlation (3D-DIC) technique. 

The full-field surface displacement and strain distributions obtained with this 

technique provided detailed information about the nonhomogeneous 

deformation over the area of interest during compression.

The ARAMIS system was calibrated using a 35 x 28 mm caliber and a facet of 

27 x 15 pixels; thus a 44 % facet overlap has been obtained.

Use of DIC for damage assessment

100 kg/m3



For the foam of 100 kg/m3 and a speed of 1 mm/min are presented the reports

obtained in the linear elastic region. Global and local strains are about the

same at the same moment of the test, as after about 1120 seconds.



Two stages for different tests in 

the plateau region for the 

foam of 100 kg/m3

Localized deformation bands 

appear in the middle section of 

the specimen



Apostol D.A., Constantinescu D.M., Marsavina, L., Linul, E., Analysis of

deformation bands in polyurethane foams, Key Engineering Materials, 601, 250-

253, 2014.

Apostol D.A., Constantinescu D.M., Stuparu F.A., Characterization and Damage

Assessment of Polyurethane Foams Subjected to Compression Testing,

Materiale Plastice, vol. 53, no. 3, 454-457, 2016.

140 kg/m3



Local deformation for the foam with 325 

kg/m3 tested at 1 mm/min

Influence of the boundaries for the foam 

with 325 kg/m3 tested at 1 mm/min

These experimental observations of deformation bands indicate DIC as a

powerful full-field tool to monitor the local crushing behaviour, being capable

to account for the influence of the foam density and speed of testing.
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The core technology to be developed in the project is reactive inkjet printing as

a technology to enable the additive manufacturing of novel thermoset

composites based on epoxy-polyamine resins.

We will pioneer heterogeneous epoxies, composed from hard and soft microscale

subdomains, with contrast and spatial distribution, which will be designed by

modelling such to enhance the overall material toughness, without compromising

its strength and modulus. Functionalized nanoparticles will be introduced at

specific sites to either produce reinforcement or to enhance energy dissipation.

The proposal addresses two important needs:

(i) The need of 3D printing with thermoset materials. Although AM was used

extensively with thermoplastics, printing of thermosets is still to be convincingly

demonstrated,

(ii) Epoxy is typically brittle. Any improvement in toughness would greatly increase

its range of applications and market share.

Current research in AM



5PhD students and 2 MSc students working in the laboratory

❑ ANYCUBIC Photon 3D, Digital Light Processing (DLP) – metamaterials

Schwarz P 6x6x6 unit cells Schwarz D 6x6x6 unit cellsGyroid 6x6x6 unit cells

❑ CREALITY Ender-5 

Pro 3D FDM 



Experimental methods are beautiful!

Thank you for your attention!


