

1st Winter School on

Trends on Additive Manufacturing SIRAN

Simulation for additive manufacturing: opportunities and challenges

Prof. Ferdinando Auricchio

Computational Mechanics and Advanced Material Group University of Pavia

Presentation outline

- Introduction
 - AM 3DP: advantages, open problems
- Design for additive
 - Phase-field topology optimization: gradient material
 - Adaptive isogeometric analysis
 - Phase-field topology optimization: single material

Process simulations

- o Immersed boundary approach
 - Melt pool: high fidelity simulations
 - Part-scale: low fidelity simulations
- o Two-level method
- Product simulations
 - Lattice components
 - Industrial components
- Future activities & directions
 - Innovative processes and materials
- Conclusion

AM: advantages / disadvantages / impact

Advantages

- Produce complex geometries: close to free-form flexibility
- Produce single device made of multiple components (assembling more parts into a single one)
- Combine different devices and geometries in a single printing batch
- Green technology: reduced waste
- Accelerate design-testing-production process chain (even in our labs)

Disadvantages

- Need of support materials (technology dependent)
- Very localized physics (multi-scale problem, technology dependent)
- Low speed (still a limitation)
- High cost (still a limitation)
- Interaction with further production steps (subtractive or finishing)

Ferdinando Auricchio

CompMech Group

- Introduction
 - o AM 3DP: advantages, open problems
- Design for additive
 - o Phase-field topology optimization: gradient material
 - o Adaptive isogeometric analysis
 - Phase-field topology optimization: single material
- Process simulations
 - o Immersed boundary approach
 - Melt pool: high fidelity simulations
 - Part-scale: low fidelity simulations
 - o Two-level method
- Product simulations
 - o Lattice components
 - o Industrial components
- Future activities & directions
 - o Innovative processes and materials
- Conclusion

Design for additive: challenges

- Close-to-freeform flexibility requiring novel design approaches
- Topology and shape optimization as tools for design, focusing on product functionality and production constraints

Phase-field topology optimization (PF top-opt)

Topology optimization: goal

- Optimal distribution of given amount of material
- Minimize structure compliance (i.e., maximize stiffness)

Phase-field Method:

• No filtering methods required (cfr. SIMP approaches)

Limit discussion to for linear elastic problems introduce standard elastic problem in a domain $\boldsymbol{\Omega}$

 $div[\mathbb{C} \varepsilon(\mathbf{u})] = \mathbf{b} \quad in \quad \Omega$ $\mathbf{u} = \mathbf{0} \qquad on \quad \Gamma_D$ $[\mathbb{C} \varepsilon(\mathbf{u})] = \mathbf{t} \qquad on \quad \Gamma_N$

Introduce description of meso-structure (variable density, lattice):

Obtain a graded design, i.e., structure with varying density

Objective

Minimize structure compliance:

 $\int_{\Omega} \mathbf{b} \cdot \mathbf{u} \, d\,\Omega + \int_{\Gamma_N} \mathbf{t} \cdot \mathbf{u} \, d\,\Gamma$ properly distributing material in Ω

Acknowledgments: M.Carraturo, E.Rocca, A.Reali (UniPV & IMATI-CNR), E.Bonetti (Università di Milano & IMATI-CNR), D.Hömberg (WIAS Institute Berlin) Publications:

- Carraturo, Rocca, Bonetti, Hömberg, Reali, FA. Graded-material design based on phase-field and topology optimization. Computational Mechanics, Vol. 64, 1589–1600 (2019)
- FA, Bonetti, Carraturo, Hömberg, Reali, Rocca. A phase-field based graded-material topology optimization with stress constraint. M3AS, Vol. 30 (08), 1461–1483 (2020)

Ferdinando Auricchio CompMech Group	January, 2021	[5]
-------------------------------------	---------------	-----

Trutal Modeling and Additive Manufacturing for Advanced Materials

Phase-field topology optimization: gradient multi-material

 $[\varphi = 0: no material, \varphi = 1: material]$

 $[\chi = 0: material B, \chi = \varphi: material A]$

 $\mathbb{C} = \mathbb{C}_R \chi + \mathbb{C}_4 (1-\chi)$

 $0 \le \varphi \le 1$

 $0 \leq \chi \leq \varphi$

Double-well potential

 $\psi_0(\phi) = (\phi - \phi^2)^2$

- Phase-field variables
 - $oldsymbol{arphi}$: material presence
 - χ : material features (scalar quantity=density)
- Material elasticity continuously varies from a soft (\mathbb{C}_B) to a stiff material (\mathbb{C}_A)
- Classical topology optimization: minimize compliance, complemented with a perimeter measure

$$\mathcal{J}(\phi,\mathbf{u}) = \int_{\Omega} \phi \mathbf{b} \cdot \mathbf{u}(\phi) \, d\Omega + \int_{\kappa_N} \mathbf{t} \cdot \mathbf{u}(\phi) \, d\Gamma + \kappa_{\phi} \int_{\Omega} \left[\gamma_{\phi} \|\nabla\phi\|^2 + \frac{1}{\gamma_{\phi}} \psi_0(\phi) \right] d\Omega$$

New topology optimization: Introduce extra-penalization for the gradient of second scalar field χ

- Minimization process
 - $\circ~$ Allen-Cahn gradient flow, i.e. steepest descent pseudotime stepping method, with time-step increment $\tau~$

$$\frac{\gamma_{\phi}}{\tau} \int_{\Omega} (\phi_{n+1} - \phi_n) v_{\phi} d\Omega + \kappa_{\phi} \gamma_{\phi} \int_{\Omega} \nabla \phi \cdot \nabla v_{\phi} d\Omega + \dots = 0$$
$$\frac{\gamma_{\chi}}{\tau} \int_{\Omega} (\chi_{n+1} - \chi_n) v_{\chi} d\Omega + \kappa_{\chi} \gamma_{\chi} \int_{\Omega} \nabla \chi \cdot \nabla v_{\chi} d\Omega + \dots = 0$$

- Alternate solution of gradient flow and equilibrium problem
- Finite element approximation of fields
 - o Discretize domain using quads
 - Piecewise linear basis functions (except that for global fields)

- Adopt a two-step algorithm
 - o solve equilibrium to get displacement vector
 - solve Allen-Cahn gradient flow to get phase-field, material field, Lagrange multiplier vectors
 - o rescale to fulfilling constraints

$\mathbf{input} \hspace{0.2cm} : \hspace{-0.2cm} \mathcal{Q}, \hspace{-0.2cm} \mathcal{Q}_{\chi}, \hspace{-0.2cm} \mathcal{Q}_{\lambda}, \hspace{-0.2cm} \boldsymbol{\phi}_{0}, \hspace{-0.2cm} \boldsymbol{\chi}_{0}$		
output: Optimal topology		
1 $\phi_n \leftarrow \phi_0$		
2 $\boldsymbol{\chi}_n \leftarrow \boldsymbol{\chi}_0$		
3 while $(\Delta_{\phi} \geq tol \text{ or } \Delta_{\chi} \geq tol)$ and $n \leq max_{iter}$ do		
$4 [\mathbf{\tilde{u}}_{n+1} \leftarrow \mathtt{solve}(26)]$		
5 $(ilde{\phi}^*_{n+1}, ilde{\chi}^*_{n+1}, ilde{\lambda}_{n+1}) \leftarrow extsf{solve}(27)$		
6 $\left \tilde{\phi}_{n+1} \leftarrow \texttt{rescale} \left(\tilde{\phi}_{n+1}^* \right) ext{ to } [0,1] \right.$		
$ au ilde{oldsymbol{\chi}}_{n+1} \gets ext{rescale} \left(ilde{oldsymbol{\chi}}_{n+1}^* ight) ext{ to } [0, \phi]$		
s update $(\Delta_{\phi} \text{ and } \Delta_{\chi})$		
9 $\phi_n \leftarrow \phi_{n+1}$		
10 $\mid \hspace{0.1 cm} \boldsymbol{\chi}_{n} \leftarrow \boldsymbol{\chi}_{n+1}$		
11 end		

• Use $\Delta \phi$ L2-norm increments as convergence criteria

Phase-field gradient top-opt: examples

- Multi-material distribution very different from single-material topology (right figure) for small values of γ_{χ}
- Voids present in single-material structure replaced by areas of soft material in multi-material structure
- When thickness of diffuse interface is too small compared to element size, solution does not converge

	•		•	
Loro	Inchance			
		0,101	100	

CompMech Group

[8]

Phase-field gradient top-opt: MBB example

DL

- Messerschmitt-Bölkow-Blohm (MBB) beam
 - Applied force = 25 N
 - Material: RGD851 rigid polymer from Stratasys (E=2.3 GPa and v=0.3)
 - 3D printer machine: Stratasys Objet 260 Connex 3
 - Volume fraction = 0.6
 - Mass fraction = 0.4

• Results

- 1. Black-and-white structure indicates material presence
- 2. Density continuously re-distributed within material region

Acknowledgments: G.Alaimo, M.Carraturo, E.Rocca, A.Reali (UniPV & IMATI-CNR)

Publications: Alaimo, Carraturo, Rocca, Reali, FA. Functionally graded material design for plane stress structures using phase field method, II International Conference on Simulation for Additive Manufacturing - Sim-AM 2019

CompMech Group

[10]

Phase-field gradient top-opt: numerics, 3D printing &

DI PAVIA

Virlal Modeling and Additive Manufacturing for Advanced Materials Objective: evaluate optimized versus uniform (same weight) specimen in terms of max. displacements

Ferdinando Auricchio

CompMech Group

Phase-field gradient top-opt: 3D extension

• Objective: extend 2D workflow to 3D structures to evaluate the performance of the optimization for a 3D case

Phase-field single material top-opt:

Work in progres...

adaptive isogeometric analysis UNIVERSI'

- Idea: Approximate mechanical and phase-field solution space using IGA, since higher continuity of IGA basis functions very effective for phase-field methods
- Adaptive Isogeometric Analysis as presented in Henning et al. 2016 allows to locally concentrate the computational effort at the material interface without any loss of accuracy
- Single material

Acknowledgments: Markus Kästner, Paul Henning, Leonhard Heindel (TU Dresden), M.Carraturo, A.Reali (UniPV & IMATI-CNR)

Publications: Henning, Heindel, Carraturo, Reali, FA, Kästner. *Projection Methods in Adaptive Isogeometric Analysis and its Application to Topology Optimization,* Proceedings in Applied Mathematics and Mechanics (*accepted*).

Ferdinando Auricchio	CompMech Group	January, 2021	[13]

Phase-field single-material top-opt: new formulations

Iniversità di Roma

Tor Vero

Single material, hence single scalar field **\ophisis** Volume-constrained formulation:

Formulation including compatibility, constitutive, equilibrium equation into a single functional

$$\mathcal{L}^{\nu c}(\phi, u, \varepsilon, \sigma) = \underbrace{\mathcal{J}(\phi, u) + \kappa_b \mathcal{B}(\phi) - \mathcal{E}^{el}(\varepsilon, \phi) + \int_{\Omega} \sigma: (\varepsilon - \nabla^s u) \, d\Omega + \lambda \left[\int_{\Omega} (\phi - \overline{\nu}) \, d\Omega \right]}_{\text{Hu-washizu}}$$

$$B(\phi) = \int_{\Omega} b(\phi) \, d\Omega \quad \text{with} \quad b(\phi) = \begin{cases} (\phi - 1)^2/2 & \text{if} \quad \phi > 1 \\ 0 & \text{if} \quad 0 \le \phi \le 1 \end{cases}$$

$$\mathcal{E}^{el}(\varepsilon, \phi) = \frac{1/2}{2} \int_{\Omega} \mathbb{C}(\phi)\varepsilon:\varepsilon \, d\Omega$$

No need of re-normalizing volume fraction

• All eqns into a single functional, i.e. possible monolithic solution schemes

Volume-minimization formulation: Not imposing a constraint on volume but looking for volume minimization

$$\mathcal{L}^{vm}(\phi, \boldsymbol{u}, \boldsymbol{\varepsilon}, \boldsymbol{\sigma}) = \mathcal{J}(\phi, \boldsymbol{u}) + \kappa_b \mathcal{B}(\phi) - \mathcal{E}^{el}(\boldsymbol{\varepsilon}, \phi) + \int_{\Omega} \boldsymbol{\sigma}: (\boldsymbol{\varepsilon} - \nabla^s \mathbf{u}) \, d\Omega + \frac{\kappa_v}{2} \left[\int_{\Omega} \phi^2 d\Omega \right]$$

Results

With

- Relation between \mathcal{L}^{vc} and \mathcal{L}^{vm} : possible to show that they return the same solution
- Second approach is not a saddle point problem but a true minimization (improved convergence properties)

Acknowledgments: E.Rocca, A.Reali (UniPV & IMATI-CNR), U.Stefanelli (University of Vienna), M.Marino (University of Roma Tor Vergata) Publications: Marino. FA, Reali, Rocca, Stefanelli (2020), *Mixed variational formulations for structural topology optimization based on phase-field*, submitted

Ferdinando Auricchio CompMech Group	January, 2021	[14]
-------------------------------------	---------------	--------

DI PAVIA

0.7

0.8

Accurate and extensive numerical investigation

- Increasing volume stiffness reduces volume fraction
- Solutions from two formulations are identical in terms of compliance C_{sol} and interface perimeter P_{sol} for the same value of final volume fraction
- Volume minimization shows improved convergence error decreases more monotonically (!)
- Volume minimization converges faster in terms of
 - simulation time 0
 - number of Newton iterations 0

new formulation results

Phase-field single-material top-opt:

0 10^{-6}

 10^{-5}

 10^{-4}

Convergence parameter c_{AC}^{conv}

Ferdinando Auricchio

CompMech Group

Normalized simulation time

January, 2021 [15]

0.001

0.010

0.100

- Introduction
 - AM 3DP: technologies, materials, advantages, open problems
- Design for additive
 - Phase-field topology optimization: gradient material
 - Adaptive isogeometric analysis
 - Phase-field topology optimization: single material

Process simulations

- Immersed boundary approach
 - Melt pool: high fidelity simulations
 - Part-scale: low fidelity simulations
- \circ Two-level method
- Product simulations
 - o Lattice components
 - o Industrial components
- Future activities & directions
 - o Innovative processes and materials
- Conclusion

Process simulations: challenges

- Large scale range both in space and time
- > Complex physical phenomena to be modeled
- Predict defects due to process

LPBF-AM process simulations

Focus on the most industrially relevant technology: laser powder bed fusion for metal components (LPBF)

Standard AM-design process

- 3D virtual model is developed within a CAD environment
 - Geometry to be repaired
 - Conform mesh generated
 - Finite element analysis of the process
 - To update the geometry, need to go back to CAD software and start procedure once again ...

AM-design-through-analysis

- Thermo-mechanical analyses can be performed directly on CAD models
- STL repair step required only once the final design ready to be printed
- Remarkable computational speed-up for multi-layer high-fidelity analyses of complex geometrical features

Acknowledgments: Ernst Rank, Stefan Kollmannsberger, John Jomo, Ali Özcan, Nils Zander (TUM), M.Carraturo, A.Reali (UniPV & IMATI-CNR) Publications:

- Kollmannsberger, Özcan, Carraturo, Zander, Rank. A hierarchical computational model for moving thermal loads and phase changes with applications to selective laser melting. CAMWA, Vol. 75 (5), 1483-1497 (2018)
- Carraturo, Jomo, Kollmannsberger, Reali, FA, Rank. Modeling and experimental validation of an immersed thermo-mechanical part-scale analysis for laser powder bed fusion processes. Additive Manufacturing, Vol. 36, 101498 (2020)

Ferdinando Auricchio

CompMech Group

January, 2021

Immersed boundary approach for growing domain

The Finite Cell Method (FCM)

Initial domain discretization

- > Weak form modified using a parameter α evaluated at Gauss points
- > Integration points distributed on sub-cells to accurately integrate over discontinuities at boundaries

• Application to growing domains

- LPBF is a layer-by-layer process \geq
- Physical domain grows during the process \geq
- Distinguish among **cell-layers** (where shape \geq functions are defined) and powder-layers (where Gauss points are activated)

Х

Х Х

Х

Х Х Х

 $\alpha(\mathbf{x}) \ \alpha(\mathbf{u}, \mathbf{v}) = l \ (\mathbf{v})$

Х Х

with $\alpha(\mathbf{x}) = \begin{cases} \mathbf{1} : \forall \mathbf{x} \in \Omega_{phys} \\ \mathbf{0} : \forall \mathbf{x} \notin \Omega_{phys} \end{cases}$

Integration sub-grid

[18]

powder

Ferdinando Auricchio

air

powder

CompMech Group

 t_{n+1}

X

Х

Х

The powder entirely fills

the cell

Immersed boundary approach for growing domain:

DI PAVIA

[19]

• Due to problem complexity, need to choose a-priori solution scale

Choose quantities of interested

Input parameters	Range values
Laser power	100÷1000 [W]
Laser speed	0.2÷1.5 [m/s]
Laser spot radius	25÷100 [μm]

different scale approaches

Objective

- Predict temperature and stress state at the melt-pool lengthscale (element size ~ 10μm)
- Evaluate melt-pool shape and cooling rate

Model features

- Few laser strokes can be simulated (10÷100 mm length)
- Powder is included in the model
- Phase-change has to be taken into account

Objective

- Predict part deflection after base plate removal
- Evaluate residual stresses in the final component

Model features

- **Complete process** is simulated (including post-processing steps, e.g. part removal)
- Powder modeled as conduction BC, not included in the domain
- Latent heat usually neglected

CompMech Group

Ferdinando Auricchio

