IB melt pool: experimental validation of thermal model
(AMBench2018 ) 53"

* Ex-situ measurements of the melt-pool cross
section

—
Virtual Modeling and Additive Manufacturing for Advanced Materials

e Material: INCONEL 625

* No powder involved

* Adjacent, independent laser scans using 3 different
combinations of power and speed
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Acknowledgments: Brandon Lane, Ho Yeung (NIST), Kollmannsberger (TU Munich), M.Carraturo, A.Reali (UniPV & IMATI-CNR)
Publications: Kollmannsberger, Carraturo, Reali, FA. Accurate Prediction of Melt Pool Shapes in Laser Powder Bed Fusion by the Non-Linear Temperature Equation Including Phase Changes Integrating
Materials and Manufacturing Innovation, 8, 167-177 (2019)
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* Objective: Estimate the influence of different laser
power and speed control modes on Residual Stress
* Method:
= Ninedifferent scan strategies printed on a bare Inconel
625 plate
= Thermal model validated wrt melt-pool area of the first
scan strategy measured using high-speed thermal camera
= RS magnitude and distribution compared to find the
strategy minimizing Residual Stress

102 —— Measurements « - + + Simulation
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IB melt pool: effect of scanning strategies
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The different combinations of power and speed control modes allow to achieve
different results in terms of melt-pool variations, surface topography, and RS
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Publications: Carraturo, Lane, Yeung, Reali, FA Numerical evaluation of advanced laser control strategies Influence on residual stresses for laser powder bed fusion systems. Integrating Materials and

Manufacturing Innovation, 2020.
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Publications Carraturo, Jomo, Kollmannsberger, Reali, FA, Rank, Modeling and experimental validation of an immersed thermo-mech. part-scale analysis for LP-BFP. Additive Manuf. 36 (2020)
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A} Parts on the

* Problem setup: e
e Part height: 12.5 mm
» # total powder layers: 625

B) Parts 2 and 3 are
separated for residual
strain and distortion
measurements

. /:i\ —e— AMB2018-01-625-CBM-B1-P3
 Layer thickness: 20 um - . Co | Nmerieal results i = 125
* Experimental setup: ‘ }— Y
* 4 cantilever beams are printed on a build plate - .
using Inconel 625 using an EOS M270. g
. . E 0.4
* Part deflection after support removal is £
. 0.2
measured at the eleven ridges
0 4
* Simulation setup: o AN S T S B B
. p . . . 02 0 1‘[] 2‘(} 3‘[] i(] ﬁk) ﬁl(l T;'.)
* 2 FCM discretization with agglomerated layers of - X ]
2.5 mm and 0.5 mm thickness, respectively 125 e —————

and 25 powder layers / agglomerated layer

 Numerical results:
* Max. deflection relative error< 5%

* Almost perfect correlation with experimental
measurements (~¥99%)

Publications: Carraturo, Jomo, Kollmannsberger, Reali, FA, Rank, Modeling and experimental validation of an immersed thermo-mechanical part-scale analysis for LP-BFP. Additive Manuf., 36 (2020)
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Physical
domains
Final physical domainQ
Green: component to be
printed
Computational
grids

Ferdinando Auricchio

Global coarse mesh:
* resolves coarse scale
e covers entire domain

PhysicaldomainQ @ t
Gray: active domain
Yellow: dormant domain

Global coarse mesh @ t

* fixed throughout simulation

* dormant region: numerically
as an artificial domain

CompMech Group

. UNIVERSITA
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Differentscales @ t:
Cyan: coarse-scale region Qt+
Magenta: fine-scale region Qt-.

Full discrete problem @ t

* fine local mesh covers fine-scale region

* coarse global mesh covers entire
domain

January, 2021 [25]
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Virtual Modeling and Additive Manufacturing for Advance:

AM: toward a two-level method

» GOAL: approach problems with small portion featuring a significantly more complex physics

o Additive manufacturing / Fluid flow with immersed membranes
> |IDEA: avoid adaptivity, computationally attractive, difficult to generate, possibly with preconditioning issues

o DIFFICULTIES: problems with time-dependent evolution of region requiring fine mesh

> ORIGINAL TOY PROBLEM: steady thermal problem
» Two regions, Q, and Qg with different thermal properties

V.- (kVT)=f in Q,& Q4
T=T, on T, Ly
oT .
K— = on
SIE
r, Qa

Ko In Q4
K = ,
kg in flg

continuity condition on y / initial condition

piecewise heat conductivity B

|
Extension to transient & phase transition problems

Acknowledgments: A.Viguerie, S.Bertoluzza, FA (UniPV & IMATI-CNR),

UNIVERSITA
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As in Fat Boundary Method, split original problem into two
subproblems ( Global & Local )

Local problemin Q_

Global problemin Q,

Q,=0,UQ, Q_=1Qp
Ky =K, In 0, K_ =kg in Q_
Iy Y
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Viguerie, Bertoluzza, FA. A Fat boundary-type method for localized nonhomogeneous material problems Computer Methods in Applied Mechanics and Engineering, 364, 2020
January, 2021

Publications:
Viguerie, FA. Numerical solution of additive manufacturing problems using a two-level method, International Journal for Numerical Methods in Engineering, 2020 (accepted)
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AM: toward a two-level method

e —————————
e —
Virtual Modeling and Additive Manufacturing for Ac virtyal Modeling and Additive Manufacturing for Advanced Materials

: : . . . UNIVERSITA
» Since Q_c Q,, in Q_we have two distinct functions at the same time, a local one and a global one DI PAVIA

» Theorem: Two level formulation (Q, & Q.) is equivalent original formulation (Q, & Q)

v' Use two-level formulations to derive a two-level iterative method
v' Solve iteratively until convergence is reached

Step k (iterate until convergence)
k.1 Obtain temperature distribution Ty, by
solving on subdomain Q_

=V & VTy) =f
Tee1=T¢ ony

k.2 Obtain temperature distribution T};,, by
solving on the entire domain (0,

k.3 Perform relaxation step to obtain a
temperature distribution Ty, ;

| To., =0Ty + (1 —0)T with &8 € (0,1] |

v Under-relaxation needed, as iterative algorithm may suffer instability ( k_>>«k, )
v’ Convert in weak form and discretize in the FE spirit (P2 piecewise quadratic FE)

Ferdinando Auricchio CompMech Group January, 2021 [27 ]
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Linear steady thermal problem with Q unit square and Qg top rectangle

| Global problem: h, | Local problem: h_

Two-level method: linear steady thermal problem

Ay
m qr\,:(),qﬂs()
W Qs Q. |
q:ﬂ q:() |
H p— + I
|
0 |
| T=T, Qal N _x o

X

! L |

H=10,L=1.0,H_=.05 k4 =1.0, ks =20.0, T = 20
(1-2)?

g = 2000 exp ( 004

GOAL: investigate error in terms of global mesh size h, vs local mesh size h_
IDEA: for different levels of h,, observe error when refining h_

Compute solutions for three global uniform meshes: A, = 1/20, 1/40, 1/80
Plot error wrt reference solution ( u,.r on a single fine uniform mesh with

h =1/500)

Ferdinando Auricchio

) H /H=5% k,./k_.=5%

L2Err0r

® [or each curve the rightmost point
corresponds to the solution obtained
without using the two-level algorithm

UNIVERSITA
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e Refinement of local mesh h_ reduces error

for each level of h,
e Refine the local mesh to gain accuracy

e Accuracy improvements are not less
pronounced as we refine global mesh
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AM: toward a two-level method

' '
D@Unil D@UnIPV
Unsteady non linear thermal problem with moving heating source (heating/cooling)

Evolving domain, i.e. domain changes in time

Material profile
Black: powder

Temperature profile
Yellow: solid
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e Product simulations
o Lattice components
o Industrial components

Ferdinando Auricchio

UNIVERSITA
DI PAVIA
Product simulation challenges
» Quality control of the final parts
» Material characterization
» Mechanical properties of the printed
part
January, 2021 [30]
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MOTIVATION: e lattice structure very appealingin terms of lightness
® AM lattice structures with long/expensive mechanical characterization procedure
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effective and reliable o
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Acknowledgments: N. Korshunova, S. Kollmannsberger, E. Rank (TUM) J. Niiranen, S.B. Hosseini (Aalto Uni) G.Alaimo, M.Carraturo, A.Reali (UniPV & IMATI-CNR)
Publications: Korshunova, Alaimo, Hosseini, Carraturo, Reali, Niiranen, FA, Rank, Kollmannsberger, Tensile and bending behavior of additively manufactured octet-truss structures (in preparation)
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e As-manufactured vs as-designed components

= L PBF processes: introduces defects on the geometry, e.g., geometric
defects due to lack of fusion defects

= Influence of defects on 3D printed mechanical properties cannot be
neglected (Maconachie 2019)

= As-manufactured geometrical model of the part should be used for a
reliable numerical analysis of the product

= Computed tomography (CT): optima choice for acquisition of as-
manufactured geometry of 3D printed parts
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e Immersed Numerical Analysis of CT-scan

= CT-scanimages: very large and usually unaffordable high
computational cost to generate a conforming mesh

= As-designed (CAD) models: not reliable for numerical analyses

» Finite Cell Method: possible solution to compute directly on CT-scan

images obtaining reliable numerical results with a reasonable g
computational cost

Ferdinando Auricchio January, 2021 [32]



@UHIPV LPBF lattice components:
S three-point bending test validation v}

Objective: compare experimental vs predicted
response

Experimental settings

e Uniaxial test

e Three-point bending test

* Four octet-truss structures with varying thickness

von Mises

Comparison

* CAD-based model (commercial codes) - ‘ . e oo
 CT-based model (using FCM) ' e
* Experiments

B Experimental values

B Numerical as-build
® Numerical as-designed
[N N
— o
wn un
00
- N
_ 5 R
HE |
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Results:

* CT-based model: well capture experimental data

* CAD-model: also for bending rigidity - values
approx. 45% lower than experimental data

Bendingrigidity N/mm

. 12

I 309
| 304
| 155
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Virtual Modeling and Additive Manufacturing for Advanced Materials
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Coffee machine components (La Marzocco)

® Redesign & optimization: performance improvements
e Distortion predictions: geometrical accuracy improvements

Anomalous
misalignment

111.00 mm| /

Ferdinando Auricchio January, 2021 [34]
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Virtual Modeling and Additive Manufacturing for Advanced Materials

AM coffee machine: redesign and optimize

UNIVERSITA

NI DAV/A
= @

Original design

Optimization
of new design

Simulation &
validation

Additively manufactured
& experimental validation

Model parameter fitting
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—s—Simulation
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Florentine lily
geometry

Ferdinando Auricchio

AM coffee machine: distorsion prediction

UNIVERSITA
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Step 1: evaluation of residual distortion

Florentine lily
compensated
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e Future activities & directions
o Innovative processes and materials

Ferdinando Auricchio January, 2021
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Virtual Modeling and Additive Manufacturing for Advanced Materials

Innovative AM processes and materials

GOAL: combine low-cost AM technologies with chemical/thermal processes

to produce metallic (or metal-ceramic) components

Path 1- Extrusion of non-Newtonian fluids (i.e., colloids)

Effective
viscosity

1 lkll\lrnSITA

Maon-Newtanian fluid |A

Newtonian fluid

Ste 1. Preparation of
precursor material

Step 2. 3D printing

Step 3. Sintering processes

* Find optimal mix and
proportion of ingredients

Oxides (powder)
Polymeric binder
Additives

* Avoid bubbles and
contamination during
mixing

B
TR

Design of in-house system .

Find optimal temperature
ramps for

Solvent evaporation
Debinding
Sintering

Temperatura (°C)

o 5 10 15 20 25 30 35 40 45

Tempo (h)

Acknowledgments: Simone Morganti, Umberto Anselmi Tamburini (UniPV)
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Innovative AM processes and materials

UNIVERSITA

GOAL: combine low-cost AM technologies with chemical/thermal processes DIPAVIA

electrical
current

to produce metallic (or metal-ceramic) components

e i I

oooooooo

pressure

3D Printing Sintering Processes

* Design of in-house system * Find optimal temperature

ramps for:
Sintering with Spark

Plasma Sintering (SPS)
technique

Temperature

No further steps:

Electric field
Joule effect

Pressure control

Vacum

Power

supply

Pressure
Mechanics

Ferdinando Auricchio
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Virtual Modeling and Additive Manufacturing for Advanced Materials

* 3D4Med

CELLINK Fibrin differentiation: LIVE/DEAD

7 day

21 days

* industrial research: combination additive-subtractive / component simulation & production
January, 2021 [40]
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e Conclusion
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3D printing ... a real breakthrough technology
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